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Abstract—Aligning representations between the video and text
domains is crucial in video-text retrieval. Most deep learning
algorithms conceal this mechanism in a latent space through end-
to-end optimization. In addition, the computational requirements
for training and inference increase exponentially with the video
length. To address interoperability and efficiency, we propose an
interpretable video-text alignment (VTA) method in this work.
Through keyframe selection and genre clustering, we reduce the
number of trainable parameters to just 3% compared to CLIP [1]
backbone training while maintaining constant time and space
complexity during inference.

Furthermore, our alignment method connects embedding
spaces of different modalities. During the alignment process,
the conditional probabilities for a given object or phrase are
estimated and aggregated, providing probabilistic support for our
predictions. Hence, the alignment method is fully transparent.
Experimental results on the MSR-VTT dataset demonstrate that
the proposed VTA method offers state-of-the-art performance.
Moreover, our alignment method does not demand fine-tuning of
the pre-trained encoder, thereby avoiding bias from small paired
training datasets.

Index Terms—Video-Text Retrieval, Video Content Under-
standing, Multimodal Alignment.

I. INTRODUCTION

In today’s fast-paced digital content creation and consump-
tion environment, efficiently retrieving relevant information
from various multimedia sources is more important than ever.
An example is the video-text retrieval (VTT) task, which
finds the most relevant video related to a given sentence
and vice versa. It can summarize video content in just a
few words or find a highly relevant video clip based on a
sentence description. The MSR-VTT dataset [2] is illustrated
in Figure 1, where a video clip has five or more captions.
A VTT algorithm must retrieve the most relevant counterpart
from the other modality when provided with either a clip or a
caption.

Although Large Multimodal Models (LMMs) exhibit re-
markable performance in visual content understanding, they
face three challenges: (1) data scarcity, (2) high training and
inference costs, and (3) a black-box process. To address these
issues, we propose an efficient and transparent video-text
alignment (VTA) method, which bridges the embedding spaces
in the video and text domains.

The proposed VTA method has three advantages.

Fig. 1. A video-text pair in the MSR-VTT dataset [2], where each video clip
has five or more captions.

• A limited number of paired video-text datasets are avail-
able compared to the larger volume of paired image-text
datasets. If a model is trained on a limited dataset, it
faces a high risk of bias. To mitigate this risk, VTA keeps
the visual and textual encoders frozen during training,
preventing bias from affecting the model.

• The computational cost of processing videos increases
exponentially compared to that of images. In addition to
the spatial components within individual frames, videos
also contain temporal information. As the number of
frames increases, algorithms need to perform more oper-
ations to extract features, which can significantly increase
computational demands. To address this challenge, VTA
employs a keyframe selection module that minimizes
repetitive computations by inferring the model based on
a specific number of keyframes.

• Black-box LMMs can cause unexpected errors. To allow
a transparent pipeline, VTA decomposes the video-text
retrieval process into a series of probabilistic predictions.
All intermediate results are meaningful. Specifically, VTA
utilizes an object detector and part-of-speech (POS) tag-
ging to conceptualize videos and sentences in the joint
domain. We associate similar concepts with the informa-
tion in the visual and textual domains.



The VTA method consists of two stages: 1) removal of
irrelevant samples and 2) ranking relevant samples. They will
be elaborated on in Section III. Our main contributions include
the following.

• VTA reduces the number of trainable parameters to 3%,
compared to fine-tuning the visual and textual encoders.

• VTA freezes the encoders in the training stage, which
helps to maintain generalizability across domains.

• VTA illustrates the retrieval process with sequential inter-
mediate results. By assembling the results, retrieval can
be viewed as a concept-matching process.

II. RELATED WORK

Video-text retrieval relies on encoders that process visual
and textual data. The researchers initially developed jointly
trained encoders using paired image and text datasets. This
trend has since expanded from single images to sequential
frames. Various time sequence structures, such as recurrent
neural networks (RNNs) and attention mechanisms, have been
proposed to manage temporal information effectively. With
the recent advancement of Large Language Models (LLMs),
research has increasingly focused on aligning visual features
with language tokens. However, the reasoning process remains
obscured in a latent space. Kuo et al. [3] proposed Green
Learning, which avoids backward propagation and provides
understandable intermediate results to demystify the decision-
making process.

A. Multimodal Models

Torabi et al. [4] and Yu et al. [5] discuss the joint repre-
sentations across video and text domains. The foundation of
today’s dual-encoder architectures is built on a combination of
convolutional neural networks (CNNs) and Long Short-Term
Memory (LSTM) networks. Metric learning plays a crucial
role in creating a shared latent space. Hadsell et al. [6] propose
the idea of contrastive learning. The loss formulation aims to
reduce the distance in the latent space for similar samples and
to increase the distance for different samples.

Implementing the training scheme on a large-scale dataset,
Radford et al. [1] show the effectiveness of large pre-trained
models in enhancing joint representations. Portillo et al. [7]
demonstrate a straightforward frame-wise inference approach
for video-to-text retrieval, demonstrating the generalizability
of the CLIP model.

B. Visual Language Models

Large language models (LLMs) achieve impressive reason-
ing and understanding in natural language processing. Re-
search focuses on leveraging the power of large foundation
models for image and video understanding applications. Ma
et al. [8] introduce the dual-encoder structure to align the text
and video representation. However, the jointly training process
relies on the dense attention mechanism on the frame-wise
patches and word tokens. The dense inference structure may
involve repetitive patch computation between frames.

Instead of aligning two encoders, a pipeline has been de-
veloped that unifies the representations. For example, Wang
et al. [9] built unified representations in visual and textual
domains. The decoders adopted token embedding from both
domains, and another model mapped visual and textural tokens
onto a unified decoding space.

C. Green Learning

To address the lack of transparency and efficiency in deep
learning methods, Kuo et al. [3] proposed a new learning
paradigm called Green Learning. It adopts a modularized and
feed-forward training process. Users can understand all inter-
mediate results. Green learning consists of: 1) representation
learning, 2) feature learning, and 3) decision learning. For (1),
multistage PCA-based transforms [10] enable multiple joint
spatial-spectral representations. For (2), statistics-based feature
ranking tools are performed via the discriminant feature test
or the relevant feature test [11]. For (3), the XG classifier or
regressor is commonly used.

Recent research has paid attention to the two modalities
of transparent interactions of image and text. For example,
Yang et al. [12] detected human-object interaction (HOI) types
through grouping and encoding. The new model significantly
reduces computation complexity while offering competitive
performance. Furthermore, Yang et al. [13] proposed the stage-
wise alignment for image-text retrieval. In this work, we
generalize the problem by extending the visual modality from
images to videos.

III. PROPOSED VTA METHOD

In the proposed learning paradigm, we divide the retrieval
task into two stages: 1) removal of irrelevant samples and
2) ranking of relevant samples. The first stage explores sim-
ilarities in visual and textual pairs to remove unlikely can-
didates in the target domain. Then, we can train a smaller
model to rank the remaining samples in the second stage.
As shown in Figure 2, the removal process compares the key
concepts in the videos and captions, respectively. We perform
keyframe selection for the former to extract representative
visual information before object detection. For the latter, we
use the Part-of-Speech (POS) tagging to analyze keywords in
captions. By comparing the co-occurrence of detected objects
and keywords, we exclude irrelevant pairs as presented in
Sec III-A. The ranking process sorts candidates according to
the clustering of genres and trains projection matrices with
paired data of similar genres based on the embeddings of
frozen encoders. Although a simple projection matrix may
struggle with complex retrieval tasks, it performs well against
homogeneous subsets. More details will be given in Sec . III-B.

A. Stage 1: Irrelevant Samples Removal

We analyze the co-occurrence of objects in video clips
and keywords in captions. Thus, we can eliminate unlikely
pairs of clips and captions by filtering out object-keyword
pairs of low occurrence. The occurrence is proportional to
the conditional probability between objects and keywords. The
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Fig. 2. The proposed VTA process involves several steps. It uses keyframe selection and object detection for genre classification in the visual domain, and
identifies keywords through part-of-speech (POS) tagging in the textual domain. Then, it trains an alignment module in each genre group.

process of identifying a set of detected objects from video clips
and building noun and verb sets from captions is detailed in
Sections III-A1 and III-A2, respectively.

1) Keyframe Selection and Object Detection from Videos:
As shown in Figure 3, the visual concept extraction module
consists of 1) keyframe selection and 2) object detection.
The length of the input clips ranges from 10 to 30 seconds.
Each clip contains 200 to 800 frames at 24 frames per
second. Applying a pre-trained object detector to each frame
is computationally intensive. To reduce complexity, we use the
histogram difference to find shot changes in a clip and select
the frame in the middle of each shot as a keyframe. Then,
the set of keyframes represents the query clip. The histogram
difference can be computed as

χ(framei, framej) =
∑

b∈{bins}

(histi,b − histj,b)2
1
2 (histi,b + histj,b)

, (1)

where framei and framej are two consecutive frames in
the clip, and histi,b is the number of pixels in a grayscale
partitioned bin, b, of framei. We set the bin number to eight.
The histogram difference is the sum of the differences in all
bins.

Frames with the five most significant histogram differences
are identified as shot changes. Five-shot transits and the start-
ing and ending time stamps can segment the original clip into
six non-overlapping intervals. The keyframes are the middle
frames in the intervals, reducing the number of pre-trained

object detection inferences from hundreds to six.
2) Keywords Selection from Captions: To establish relations

between detected objects and captions, we utilize Part-of-
Speech (POS) tagging to classify words in captions and select
the 100 most frequent verbs and nouns to build the concept
set. Next, we use the video and caption pairs to construct
co-occurrence matrices that indicate the joint probabilities
between detected objects and keywords in captions.

For a given video, we can formulate the matching probabil-
ity of a keyword as

P (caption|video)
∼ P ({nouns}, {verbs}|{detections})

=
∏

n∈{nouns}
obj∈{detections}

P (n|obj)
∏

v∈{verbs}
obj∈{detections}

P (v|obj), (2)

where {nouns}, {verbs} denote the word sets with POS tag-
ging labels ‘noun’ and ‘verb’ in a caption, {detection} is the
detection result from its keyframes, and n, v, obj stands for a
specific concept. The normalized values in the co-occurrence
matrix approximate the probabilities. In this stage, we approx-
imate the joint probability with the product of probabilities
under the independent assumption. Although this is a rough
approximation, our objective here is to prune the candidate set
by removing unlikely captions to have a smaller training subset
for sample ranking in the second stage for higher efficiency.
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Fig. 3. The pipeline of keyframe selection and object detection from keyframes.

B. Stage 2: Relevant Samples Ranking
Large multimodal models (LMMs) perform remarkably in

various applications. However, their high computational com-
plexity and lack of interpretability pose challenges. To build
a transparent and efficient solution, we classify clips and
captions into subgroups by genre. It allows smaller modules to
be trained in each subgroup, reducing computational burdens.
The genre indicates the semantic categories to be retrieved
when given keywords and objects. The genre classification
and contrastive learning building blocks are discussed in
Sections III-B1 and III-B2, respectively.

1) Genre Classification: Instead of building a black-box
model to manage all types of video clips, we cluster a
diverse dataset into homogeneous genre types. The genre labels
indicate the characteristics of the clip’s content. The video clips
in the MSR-VTT [2] dataset have 20 genre labels. Since genre
labels are not mutually exclusive, we cluster them into several
subsets and consider the top-2 subsets in inference.

We use features from the latent space of the DETR
model [14] and detection results from the previous removal
stage to train an XGBoost classifier [15]. As illustrated in
Figure 4, the genre labels reveal confusion pairs. For example,
‘food’ and ‘cooking’ are semantically similar, as shown in the
confusion matrix. To address this, we merge some confusion
pairs to ensure that candidates are not excluded from the
classification results.

To group genre labels, we represent labels as vertices in
a graph. The number of confusion pairs serves as the edge
weight between two labels. If two labels have fewer confusing
pairs, their edge can be pruned to produce a sparser graph.
We can run a graph partitioning algorithm to divide the whole
graph into several disconnected subgraphs, leading to fewer
non-overlapping genre types. We can group captions in the
textual domain using the same genre types.

2) Contrastive Learning: Reducing the number of
clip/caption pairs in each genre type will make it more
convenient to align the visual and textual data in each genre
type. We rank the similarity of the cross-domain data by
contrastive learning [16]. The loss function is written as

Lcon = − log
exp(sim(zi, zj)/τ)∑N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
, (3)

Fig. 4. The confusion matrix among 20 genre labels.

where z ∈ Rdjoint is a feature vector of dimension djoint,
(i, j) is a paired image and sentence in the sampled batch, N
is the batch size, τ ∈ R is the temperature hyperparameter,
and 1 ∈ {0, 1} is an indicator function, whose value is one
if [k ̸= i]. The objective function maximizes the similarity
of relevant image-text pairs and prevents negative image-text
pairs from being close in the latent space. We adopt cosine
similarity as the similarity metric, namely sim(u, v) = u·v

∥u∥∥v∥ .
Aiming for efficiency, we do not fine-tune the pre-trained

encoders. Instead, we train a set of lightweight linear trans-
formations that project visual and textual features onto a joint
embedding space as:

zvis = A×F(Frame) ∈ Rdjoint

ztxt = B × G(Caption) ∈ Rdjoint ,
(4)

where zvis and ztxt are the image and text embeddings in the
joint space, F and G are the frozen image and text encoder
models, and A ∈ Rdjoint×dvis and B ∈ Rdjoint×dtext are
trainable matrices that match the output dimensions of the
frozen encoders.

Building a video encoder that supports multimodal applica-
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tions is computationally intensive. We developed a keyframe
selection procedure to reduce training costs that summarizes
representative information from a clip. It avoids constructing
a video encoder from scratch while maintaining essential
information across multiple frames. The alignment is based
on the image-level encoder, preventing an explicit use of tem-
poral information. We can concentrate on more relevant pairs
for contrastive learning by eliminating irrelevant candidates
earlier.

Furthermore, we adopt two training strategies, weighted hard
negative mining and self-adaptive temperature, to improve the
convergence of the projection matrices. We assign a weight to
the top 30% negative pairs for the former and implement a
dynamic temperature control for the latter, where the temper-
ature value is determined by the mean of the training set from
the previous iteration, in training.

IV. EXPERIMENTS

A. Experiment Settings

We perform video-to-text and text-to-video retrieval tasks
on the MSR-VTT dataset [2]. It comprises 10,000 YouTube
video clips and 200,000 captions, each with 20 captions. We
adhere to the 1K subset setting during testing for fair compar-
isons. Performance is evaluated using the Recall@K metric,
where K ∈ 1, 5, 10, where K denotes the best-performing K
candidates. The retrieval is claimed to be positive if the top K
predictions include the paired ground truth.

B. Retrieval Results

As shown in Table I, the proposed VTA method offers
competitive performance against benchmarking methods. We
only include methods without LLMs in performance bench-
marking since we focus on aligning visual and textual data.
We use the number of trainable parameters as the metric to
show the efficiency claim. Our VTA method only requires
3% trainable parameters, compared to the baseline model,
CLIP [1]. Furthermore, VTA requires only six frames in
inference. Other methods, which rely on a dense attention
mechanism, have a computational cost proportional to the
video length.

Regarding interpretability, our VTA method provides inter-
mediate results from genre classification. Genre labels, POS
tags, and detected objects can be formulated as conditional
probabilities as given in Eq. (2). The retrieval process demands
the following tasks: 1) keyword decision in captions and object
detection in video, and 2) genre ranking in the subgroups. The
VTA alignment is achieved by linking keywords and objects.

C. Ablation Studies

We perform ablation studies to examine the contributions of
each module. We divide the whole pipeline into several parts.
The vanilla setting uses only the pooled CLIP [1] features
as shown in the first row of Table II. Five post-processing
steps are considered. They are individually added to the vanilla
setting, as reported in columns 2-6 in Table II. The keyframe
selection step adopts the six frames from the shot changes. The

noun elimination step adopts the co-occurrence matrix between
detected objects and noun keywords provided by the POS tags
and the object detection results. The verb elimination step
exploits the co-occurrence of verbs and detected objects. The
verb alignment step uses the verb embedding in the ranking
module. After genre detection, the genre clustering step is
applied in the subgroup ranking module. Finally, the five steps
are added jointly, and the associated three performance metrics
are reported in the last column of the table.

V. CONCLUSION AND FUTURE WORK

This work proposed a lightweight and transparent video-text
alignment (VTA) method. Its state-of-the-art performance in
video-to-text and text-to-video retrieval tasks was experimen-
tally demonstrated. Its number of trainable parameters is sig-
nificantly lower, its inference cost was alleviated via keyframe
selection, and its processing time remains constant regardless
of the video length. The VTA method is an interpretable stage-
wise decision process. The nouns and verbs in the captions and
the detected objects in the keyframes conceptualize the visual
and textual spaces. Genre classification facilitates ranking for
the final decision in a subgroup.

Furthermore, we conducted an ablation study on each el-
ement of the VTA method. All elements contribute to the
retrieval performance in the MSR-VTT dataset. We plan to
develop a purely green learning solution for visual content un-
derstanding without leveraging the pre-trained object detector
in the future. We will have a more transparent and efficient
multimodal learning paradigm if feasible.
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