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ABSTRACT

Image-text retrieval is a fundamental task in image under-
standing. The algorithm fetches the most relevant coun-
terpart in the other modality by giving the image or text.
Large visual-language models are trained by paired image
and text data to extract the joint representations. However,
they are computationally expensive and not explainable re-
garding how the data from different modalities are aligned.
To this end, we propose an efficient and stage-wise align-
ment for image and text representations, called the Green
Explainable Multi-Modal Alignment (GEMMA). GEMMA
is computationally efficient by reducing trainable parame-
ters to 3% compared to fine-tuning all image and text en-
coders. The intermediate clustering results demonstrate the
explainability of the alignment mechanism in our model.
Experiments show that GEMMA outperforms state-of-the-
art retrieval models in text-to-image and image-to-text re-
trieval tasks on the Flick30k and MS-COCO datasets. GEMMA
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can also be generalized to unseen image-text pairs from pre-
trained visual and text encoders separately.

Keywords: Image-text retrieval, Multi-modal Alignment, Green Learn-
ing, Image Understanding

1 Introduction

Image-text retrieval links textual and visual information and is a foun-
dational image understanding application in computer vision. The goal
of the task is to link textual descriptions and pixels in image arrays that
represent similar concepts or semantics. The image-text retrieval task
aims to find the most relevant information from the candidate sets in
the counterpart modality. That is, when an image is given, the model
needs to extract related captions by ranking them with higher scores
and vice versa. Fig. 1 shows an example of an image and its paired
textual descriptions.

Image-text retrieval can provide the information for visual-textual
applications, including visual question answering [27], image caption-
ing [1], visual grounding [38], and visual common sense reasoning [48].
With the thriving development of deep learning and computational re-
sources, neural networks dominate the current research trend. Jointly
trained neural network-based image and text encoders transform the
input text and image into vectors in a common latent space. The two
encoders are trained under metric learning schemes, which compare
the cosine similarity between the paired and unpaired image and text
samples. For example, an intuitive solution to representing the image
and text in a joint latent space is optimizing two encoder models by
minimizing contrastive loss [4]. The loss function can gather the paired
information but repel the unpaired data in the latent space.

Although end-to-end solutions perform astonishingly, explainabil-
ity is crucial for image-understanding applications. In the multi-modal
application scenario, humans expect a complete reasoning procedure
instead of a magic answer from the model. However, neural networks
obscure the reasoning process within the joint latent space through
complex floating-point operations, e.g., calculating cosine similarities
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Figure 1: The example of image-to-text retrieval. By giving an image, we need to
retrieve the paired captions from the candidate set.

between vectors. The nonlinearities in the model make the whole in-
ference process a black box. To this end, we propose a multi-stage
methodology, dividing the retrieval process into three stages: 1) Global
Alignment, 2) Image Cluster Alignment, and 3) Text Cluster Align-
ment. Each alignment stage consists of three modules: a) alignment,
b) subdomain clustering, and c) subdomain feature selection. More
fine-grained information is revealed in the module’s feature selection
process.

The availability of paired image and text data is another challenge
when training multi-modal models. Most datasets contain only high-
quality data in a single modality. For example, ImageNet [7] and MS-
COCO [23] contain diverse images but lack sentence-level textual de-
scriptions associated with the images. In contrast, in textual datasets,
the BooksCorpus (800M words) [52] and English Wikipedia (2,500M
words) contain well-structured paragraphs, yet without corresponding
images. Collecting paired images and captions is expensive and labor-
intensive. Due to the subjectiveness of caption labels, it is impractical
to assume consistent captions for one image. However, the quality of
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collected pairs in both domains significantly impacts the performance
of the jointly trained multi-modal encoders. Aiming to relieve the data
scarcity, we adopt the pre-trained encoders in the image and text do-
mains instead of jointly training text and image encoders from scratch.
Then, we proposed a green learning alignment process to deal with the
lack of paired information.

We propose a new Green Explainable Multi-Modal Alignment (GEMMA)
scheme to deal with paired data scarcity and explainability. The method
utilizes the frozen image and text encoder models and aligns the rep-
resentations using the proposed alignment process. Our contributions
are summarized as follows:

• We reduce the number of parameters to around 3% compared to
fine-tuning the whole encoders. Instead of fine-tuning the pre-
trained encoders, we propose an alignment scheme from two pre-
trained encoders, making the pipeline computationally efficient.

• In order to achieve pipeline transparency, we narrow the set of
candidates in a stage-wise manner. The modular design divides
the entire dataset into subsets. We can statistically understand
the retrieval process and the crucial tokens by the feature selec-
tion modules in the sub-domain clustering.

• We provide bidirectional retrieval in the proposed pipeline. The
alignment modules consist of linear projections without incorpo-
rating any nonlinearity. Thus, the alignment process can be easily
reversed from one to another.

• We conduct extensive experiments on two public multi-modal
datasets. The results demonstrate that our method can signif-
icantly improve the performance in text-to-image retrieval.

2 Related Work

The existing methods can be classified into 1) cross-modal retrieval and
2) visual-language models (VLMs). Cross-modal models consist of a
convolutional neural network (CNN) to extract features from images
and a recurrent neural network (RNN) to process text data. The joint
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representations of the convolution and recurrent backbones are opti-
mized by metric learning. On the other hand, VLMs employ Large
Language Models (LLMs) that work in tandem with the Visual Trans-
former models (ViTs) for optimal performance. The VLM optimization
can be performed by contrastive learning, masking filling, and genera-
tive matching.

2.1 Cross-Modal Retrieval

The cross-modal retrieval algorithms consist of representation matching
and feature extraction. Metric learning schemes measure the similar-
ity between the samples and predict the matching scores. Hadsell et
al. [13] propose the idea of contrastive learning. The loss formulation
aims to reduce the distance in the latent space for similar samples and
to increase the distance for different samples. Triplet loss [32], lifted
structure loss [28], and N-Pair loss [35] construct the joint latent space
by sampling training data. The losses gather the positive and repel the
negative sampling schemes from positive and negative pairs, forming
the positive and negative pairs with the sampling schemes. Thus, opti-
mization can be improved by the hard sampling process [31, 43]. With
the thriving development of self-supervised applications, SimSCE [12]
and SimCLR [4] provide metrics to reinforce the representations. The
losses map the origin and representations from the augmented images
(crop, rotate, color distort, etc.) onto the same latent space.

Frome et al. [11] first proposed the concept of joint image and
text embedding in the ImageNet [7] classification. The pipeline uti-
lizes the textual information from the label to construct a lookup table
from the nearby concepts as the target embedding, leading to a hi-
erarchical classification. Zheng et al. [51] adopts deep CNN as the
basis for extracting the image and text features. The instance loss
optimizes the two feature extractors, which can project the represen-
tations from different modalities onto the joint latent space. Lee et al.
[21] utilize bottom-up attention object detector [1] to obtain semantic
representations of images and to perform word-level matching in the
captions. The bottom-up detector can provide the modifiers with the
noun, matching the corresponding sentence with the details.

C. Liu et al. [24] formulate the information as a graph and adopt
the structural matching to retrieve the closest subgraph. The object
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detector obtains the visual graph. The node features are the region of
interest (ROI) feature of the model, and the vertices are constructed
by the Multi-Layer Perceptron (MLP). The textual graph is the Part-
Of-Speech (POS) prediction from the Gated Recurrent Unit (GRU)
Networks. L. Wang et al. [37] adopts the instance-wise matching for
the subgraphs. The overall matching score aggregates the partial graph
similarities in a bottom-up manner.

To further exploit the information in the query image, Cheng et
al. [6] adopts the optical character recognition (OCR) module to ex-
tract semantic information such as text embeddings of the scene. The
model fuses the image token and the scene text for the joint represen-
tation. Diao et al. [9] build the image tokens from ROI by the object
detector and bidirectional GRU textual tokens. The cross-modal at-
tention module is used for the token-wise matching process. Jawade
et al. [15] constructs the visual and textual tokens from the pre-trained
model. However, the research merges the cross-modal information by
cross-attention [36] modules and manages the retrieval task with the
transformer structures.

2.2 Visual-Language Model

Transformers [36] have achieved significant results in natural language
processing and computer vision tasks. The image-text encoders can
share similar architectures. W. Wang et al. [39] crop the input im-
ages into patches and use the patches as visual tokens to formulate
the images as a novel language. The jointly trained visual and text
encoders [5] [49] are optimized end-to-end. Visual language models
(VLMs) can be categorized into three families [29] by the optimization
process: (1) contrast-based VLMs, (2) VLMs with masking objects,
and (3) generative-based VLMs. Constructive VLMs [30] are trained
by the paired multi-modal data, and the objective loss is the contrastive
loss. The self-supervised learning scheme obtains VLMs with masking
objects [18, 20, 33]; the model needs to predict the masked visual and
textual tokens. Generative-based VLMs [46, 47, 25] take advantage of
the great success of AI chatbots, which are trained in visual question
answering, image captioning, and other downstream tasks.

CLIP [30] demonstrates impressive visual representations trained
together with paired text descriptions. The transformer encoder takes
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the nonoverlapping patches and the words as input and utilizes the
pooled encoded tokens to represent the images and sentences. The
model uses a contrastive learning scheme to project image and text
representations onto a shared latent space. This shared space allows for
a better understanding of the relationship between the two modalities.
The dual (image-text) encoder architecture is prevalent in multi-modal
applications.

W. Kim et al. [18] utilizes the masked tokens in self-supervised
learning in transformers [8] for natural language processing. The model
takes tokenized sentences and image patches as input. Training tasks
include paired classification and masked token filling. Kwon et al. [20]
proposes the uniform transformer with two pre-training objectives, in-
cluding masked vision and language modeling, and multi-modal align-
ment. Singh et al. [33] proposes the multi-modal encoder with visual
and text encoders. The multi-modal encoder aligns the features from
the two encoders with global contrastive learning and masked multi-
modal modeling.

In addition to representation learning, the large language model
provides incredible performance on text generation tasks. J. Yu et al.
[46] optimize the visual encoder with image captioning as a downstream
task. With a jointly trained visual encoder and language decoder, the
model provides unified text and visual representations for the trans-
former. L. Yu et al. [47] employ the diffusion models [14, 34] for image
generation and reinforce cross-modal representations. H. Liu et al.
[25] combine the visual encoder with the LLM. The given image tokens
are used as instructions for the detailed LLM responses. However, the
training process requires large-scale paired images and texts, which is
computationally expensive.

Despite achieving state-of-the-art performance, large visual-language
pre-trained models still have shortcomings in inference. The matching
process is not transparent, and humans cannot understand the decision-
making within fully connected layers because they lack semantic mean-
ings. In addition to the lack of explainability, the fine-tuning process
is computationally expensive. These models have billions of trainable
parameters, and high-quality image-text pairs are required for tuning.
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2.3 Green Learning

To handle the computationally intensive fine-tuning process and ex-
pand the image-text encoder using unpaired data, we introduce the
Green Learning Alignment algorithm, which uses separately pre-trained
image-text encoders. The idea of Green Learning was proposed by Kuo
and Madni [19] and aims to reduce the computational cost of backprop-
agation while providing a theoretically explainable learning process for
various applications. The modular designs can divide the problem into
subproblems, which can be solved using transparent algorithms.

3 Proposed GEMMA Method

The GEMMA algorithm can be divided into three stages: 1) Global
Alignment, 2) Image Cluster Alignment, and 3) Text Cluster Align-
ment. We adopt the multi-stage approach to approximate the com-
plicated decision-making process rather than building a single large
visual-language foundation model from scratch to ensure model effi-
ciency. Starting from the pre-trained image and text feature extrac-
tors, we keep the pre-trained model frozen to maintain its ability to
generalize with unpaired data in the matching process. We align the
representations by training additional single-layer adapter matrices to
project the representations onto the joint latent space. Specifically,
the alignment process consists of three modules: a) alignment, b) clus-
tering in subdomains, and c) selection of subdomain features, where
clustering and feature selection are performed in both the image and
text domains, as shown in Fig. 2.

3.1 Alignment

In the alignment process, we do not fine-tune the pre-trained encoders.
We train a lightweight linear transformation in the visual and textual
domains to align the two representation spaces. The alignment mod-
ule is illustrated in Fig. 3. The visual and text embeddings can be
formulated as:

evis = F(Image) ∈ Rdvis

etxt = G(Caption) ∈ Rdtxt ,
(1)
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Figure 2: The overall algorithm design of Alignment. The first stage is the global
alignment. The second and third stages include fine-grained clustering and feature
selections in the image and text domain.

where evis, etxt are the image and text embeddings, F ,G are the frozen
image and text encoder models, and dvis, dtxt are the dimensions of
the image and text representations. With the deterministic represen-
tations, the matching process can be denoted as:

sim(Aevis, Betxt) = sim(zvis, ztxt), (2)

where A ∈ Rdjoint×dvis and B ∈ Rdjoint×dtxt represent the trainable
image-text alignment matrices, z ∈ Rdjoint represents the vector in the
joint space, and sim(., .) represents the similarity metric. We adopt
cosine similarity as the similarity metric, namely sim(u, v) = u·v

∥u∥∥v∥ .
We can further optimize the trainable parameters with the contrastive
learning loss function [4].

Lcon = − log
exp(sim(zi, zj)/τ)∑N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
. (3)

Here, (i, j) denotes the paired image and sentence in the sampled batch,
N denotes the batch size, and τ ∈ R denotes the temperature hyperpa-
rameter. 1 ∈ {0, 1} is an indicator function and the value is one, while
[k ̸= i]. The objective function maximizes the similarity of relevant
image-text pairs while avoiding negative image-text pairs from being
embedded closely in the latent space.
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Hence, the problem can be formulated as an optimization problem,
and all transformations are linear. We can define the inverse projection
in the joint latent space without nonlinearities.

evis = A−1zvis

etxt = B−1ztxt,
(4)

where A−1 ∈ Rdvis∗djoint and B−1 ∈ Rdtxt∗djoint represent the inverse
transformation from the joint space to the original image-text repre-
sentations. We define the reconstruction loss for both the image and
text modality.

Lrecon =
∥∥A−1zvis − evis

∥∥
2

+
∥∥B−1ztxt − etxt

∥∥
2
,

(5)

Furthermore, we use the auxiliary matrices to constrain the joint rep-
resentations and define the loss of cross-modality reconstruction as

Lcross−recon = ∥Cztxt − evis∥2
+ ∥Dzvis − etxt∥2 ,

(6)

where C ∈ Rdvis×djoint and C ∈ Rdtxt×djoint are the auxiliary transfor-
mation matrices from the joint space onto the image and text modality,
respectively. In addition, zvis, ztxt are obtained from the corresponding
paired caption or image data, evis and etxt. However, the C and D
matrices will not be used during inference. The alignment process is a
linear transformation carried out by matrices A and B. The objective
function can be written as:

L = αLcon + βLrecon + γLcross−recon, (7)

where α, β, and γ ∈ R represent hyperparameters in training. Linear
alignment provides an invertible transformation from the image-text
modality to the joint latent space and vice versa. However, the single-
layered alignment is too simple to match all the samples. Thus, we
cluster the data to form sub-datasets and utilize the stage-wise align-
ments for the detailed decision.

3.2 Sub-domain Clustering

With the alignment process, we can find similar representations by lin-
ear transformations. However, the transformation can only take global
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Figure 3: The illustration of the alignment process. The blue boxes are the features
extracted by the frozen encoders. The orange boxes are the trainable transformation
matrices. The red boxes are the auxiliary matrices for constraining the representa-
tions in the joint space.

representations, which means that images or captions are represented
as dvis- or dtxt-dimensional vectors. The image and sentence representa-
tions are the pooled output of the tokens in the prevailing transformer
models. It can be inferred from previous research that fine-grained
information is also crucial in information-matching tasks.

Due to the complexity of the fine-grained token representations, it is
challenging to train the token-wise alignment in a brute-force manner.
Thus, we adopt the clustering algorithms and use the clustering results
to obtain crucial tokens. The crucial token selection will be introduced
in Section 3.3. We can reduce the feature dimension from the number
of tokens and perform a second-stage alignment.

We adopt frequency analysis and statistical approaches to construct
a transparent and human-sensible intermediate structure. The cluster-
ing is conducted through (1) concept aggregation and (2) representation
aggregation.

3.2.1 Concept Aggregation

We extract the concrete concepts for the candidate sentences by the
Part-of-speech (POS) tagger [41]. We collect the nouns as anchors
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and calculate the Term Frequency-Inverse Document Frequency (TF-
IDF) to select the representative terms. As shown in Figure 4, the
concepts lie in a long-tailed distribution, leading to a biased probability
estimation. Hence, we aggregate the high-frequency terms based on the
detector results and divide the candidate set into subsets for better-
detailed alignments.

Figure 4: The frequency bar chart of the extracted corpus concepts. Top ten con-
cepts and the corresponding counts are (‘man’, 36743), (‘woman’, 23845), (‘people’,
12810), (‘shirt’, 12743), (‘girl’, 10035), (‘dog’, 10030), (‘boy’, 9393), (‘men’, 8005),
(‘child’, 7746), (‘street’, 7435), (‘group’, 6959), (‘front’, 6857), (‘water’, 5489), (‘hat’,
4075), (‘person’, 3810), (‘ball’, 3679), (‘jacket’, 3365), (‘building’, 3334), (‘hand’,
3113), and (‘player’, 3099).

We construct the co-occurrence matrix of the POS tagging and
object detection results in the training set. As shown in Figure 5, con-
cepts have a significant relationship with detection results. Hence, we
can group the concepts tagged with POS with the probability condi-
tional on the detection results. To visualize the physical meaning of
the clusters, we can use the word clouds to show the high-frequency
concepts in each cluster, shown in Figure 6.
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Figure 5: The occurrence matrix of POS tagging concepts and the detection re-
sults. The x-axis is the 80 object classes from the pretrained detector from the
MS-COCO [23] dataset. The y-axis is the top 100 concepts from the POS tagger.

Figure 6: The visualization results of the clustering. The font size denotes the
frequency of the word in the corpus.
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3.2.2 Representation Aggregation

The clustering is based on the K-means algorithm. To ensure consis-
tency of alignment and clustering, we use the l2-norm of normalized
representations as a distance metric.

∥ũ− ṽ∥22 = ∥ũ∥22 + ∥ṽ∥22 − 2ũṽ = 2− 2sim(u, v), (8)

where ũ and ṽ are the normalized representations, namely ũ = u
∥ũ∥ .

The clustering probability can be denoted as

prob(u ∈ clusi) =
eϵ

′(2−2sim(u,cenj))∑K
j=1 e

ϵ′(2−2sim(u,ceni))

=
eϵ·sim(u,ceni)∑K
j=1 e

ϵ·sim(u,cenj)
,

(9)

where clusi and ceni represent the i-th cluster and i-th centroid vector,
respectively. K represents the number of clusters and ϵ is a hyperpa-
rameter. If ϵ increases, the probability distribution will concentrate on
a certain class. If ϵ decreases, the probability distribution will become
uniform.

We can group images and texts based on their probabilities and
then align them using contrastive learning within these groups. We
can improve the contrastive learning process by using negative samples
similar to positive ones. We use hard-sample mining to ensure sam-
ple diversity within each group. The global alignment process helps
identify the most challenging cases. We can then enlarge the groups by
selecting the K-top candidates from the previous alignments as negative
samples.

To clarify the roles of K-means clustering and the choice of hyper-
parameters, we conducted experiments comparing K-means and Ag-
glomerative Clustering and varying the number of clusters. As shown
in Table 1, increasing the number of clusters improves the retrieval in
certain settings. However, this also requires training additional align-
ment matrices for the clusters. Therefore, we set the number of clusters
to eight to strike a balance between the number of trainable parameters
and the performance. K-means clustering is selected in GEMMA due
to its slight empirical advantage over agglomerative clustering.
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Table 1: Sensitivity to clustering methods, where R@k presents the top-k recalls and
#Param denotes the number of trainable parameters. All the experiment is based
on CLIP [30] visual encoder and RoBERTa [26] text encoder with Flickr30k [45]
dataset.

Clustering #Cluster image-to-text text-to-image #Param
R@1 R@5 R@10 R@1 R@5 R@10

KMeans
4 84.1 95.7 96.6 65.3 90.1 93.4 5.2M
8 86.3 98.2 99.4 73.2 94.2 97.2 10M
16 86.4 98.1 99.6 73.4 94.2 97.3 20M

Agglomerative
4 84.0 94.4 96.2 64.8 90.0 92.2 5.2M
8 85.5 97.7 98.7 72.9 92.8 96.1 10M
16 86.0 96.9 99.5 73.4 93.7 97.0 20M

3.3 Feature Selection

Clustering results provide pseudo-labels for further feature selection.
The label can be denoted as:

labeluclusi =

{
0, if prob(u ∈ clusi) < T.

1, otherwise.
(10)

Here, labeluclusi represents the label of the data point u whether it be-
longs to the group i, and T ∈ (0, 1] is the self-definition threshold.
With pseudo-labels, we can further adopt Discriminant Feature Selec-
tion [44] (DFT) to select informative features and reduce feature di-
mensions. DFT is a supervised feature selection process that measures
dimension-wise importance. For a given 1D input feature, we can order
the samples by the feature values and bind the feature dimension to the
sample maximum and sample minimum. Then, we can partition the
samples along the given dimension and calculate the partition purity by
weighted cross-entropy with pseudo-labels obtained from Section 3.2.
A feature is more discriminant if it has a lower loss value. Then, we
can plot the loss value curve from the lowest to the highest and use the
elbow point to select discriminant features from the whole feature set.

Separating the whole dataset into subsets allows us to conduct the
discriminant feature test among the tokens with the pseudo-labels from
the clustering results. Thus, token-level alignments can be performed
using the same procedure as global-level alignment.
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Figure 7: Visualization of DFT. Red and orange dots represent the binary labels.
The partition metric is the weighted sum of the left and right binary cross-entropy.
Dashed lines denote the potential partition points.

3.4 Mathematical Expression

The overall alignment process can be divided into three modules: 1)
global matching, 2) subdomain clustering, and 3) subdomain matching.
The subdomain clustering and alignment will be conducted within the
image and the text domain. We can aggregate the alignments in the
subproblem to approximate the overall alignment.

P (image|text) = P (image, text)/P (text)

= P (text|image)× P (image)

P (text)

=
1

P (text)

∑
c∈cluster

P (text|image ∈ c) ∗ P (image ∈ c)

∝
∑

c∈cluster
P (text|image ∈ c) ∗ P (image ∈ c),

(11)

where P (image|text) denotes the probability distribution of the images
with a given query text. P (image) and P (text) denote the probability
distribution of image and text, and cluster is the result of the cluster-
ing of our clustering modules. We further assume that the probability
distribution within the cluster can be approximated as uniform. Con-
ditional probability can reflect the stage-wise design in the proposed
pipeline.

Furthermore, we use the similarity measurement to simplify the
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probability estimator, which means that we use sim(image, text) to
represent P (image|text). In the work, we adopt the cosine similarity
as

sim(image, text)

= sim(W visF(image),W txtG(text))

= sim(W vis[Gvis;Tvis],W
txt[Gtxt;Ttxt])

∼ sim(W vis
globalGvis,W

txt
globalGtxt)

+ sim(W vis
tokens[Gvis;Tvis],W

txt
globalGtxt)

+ sim(W vis
globalGvis,W

txt
tokens[Gtxt;Ttxt]),

(12)

where Gvis and Gtxt denote the pooled outputs from the feature extrac-
tors (global features), Tvis and Ttxt denote the token, i.e. fine-grained,
features, W .

. denote the alignment matrices corresponding to different
subsets from the clustering results. The [G;T ] denotes the concate-
nated features of global and tokens. Due to computational cost, we
cannot directly collect all token features. Therefore, we conduct the
feature selection process based on the clustering results.

The feature selection process is an approximation based on the clus-
tering results. The process is expressed as a combination of the condi-
tional probabilities. For simplicity, we ignore the alignment matrix in
the following representations.

E[sim(F(image),G(text))]
= E[E[sim(F(image),G(text))]|image ∈ C1; text ∈ C2]

∼ E[sim(Gvis, Gtxt)]

+ E[E[sim(DFT ([Gvis;Tvis]), Gtxt)|image ∈ C1]]

+ E[E[sim(Gvis, DFT ([Gtxt;Ttxt]))|text ∈ C2]],

(13)

where DFT (.) represents the feature selection and dimension reduction
process in Section 3.3 and C1 and C2 represent the cluster sets of K-
means. Instead of training a complicated alignment process from the
token-level output of the feature extractor, we propose a stage-wise de-
composition on the dataset and train simpler structures for the subsets.
Meanwhile, the alignments in the stages are linear, which provides the
inversion operation and preserves the dual accessibility in image and
text domains.
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4 Experiments

4.1 Dataset

We perform the image-to-text and text-to-image retrieval on the image-
text benchmark: Flickr30k and MS-COCO. The Flickr30k dataset [45]
contains 31,000 images, and every image has five paired captions. The
training set contains 29,000 images; the validation and testing sets con-
tain 1,000. The MS-COCO [23] is a larger-scale dataset with 123,287
images, each containing at least five captions. We follow the ‘Karpathy’
splitting for the experiments [17]: 113,287 images for training, 5,000 for
validation, and 5,000 for testing. We use the two benchmarks with dif-
ferent sizes to demonstrate the scalability and generalizability of our
approaches. The performance is evaluated using the Recall@K metric
where K ∈ {1, 5, 10}. The notation K refers to the top-K matches of
the retrieval results. A retrieval is considered a true positive if the pre-
dicted matches include at least one of the paired ground-truth captions.
Specifically, if the top K matches contain one of the five correspond-
ing captions for a given image, it is counted as a positive in the recall
metrics.

4.2 Hyperparameter Settings

The overall algorithm is trained stage by stage. We adopt K-means as
the clustering algorithm. The number of clusters is 8, and ϵ is 50 for
pseudo-labeling. For Flickr30K, we set the temperature parameter at
0.02, and the ratio between losses is set to α : β : γ = 1 : 0.5 : 0.6 in
the global alignment. In the alignment of the image subdomain, the
temperature parameter is set to 0.015, and the ratio between the losses
is set to α : β : γ = 1 : 0.4 : 0.5. In the text subdomain alignment, the
temperature parameter is set to 0.01, and the ratio between the losses
is set to α : β : γ = 1 : 0.3 : 0.4.

For the MS-COCO dataset, the temperature parameter is set to
0.05, and the ratio between the losses is set to α : β : γ = 1 : 0.5 : 0.5
in the global alignment. In the alignment of the image subdomain, the
temperature parameter is set to 0.03, and the ratio between the losses
is set to α : β : γ = 1 : 0.3 : 0.5. In the text subdomain alignment, the
temperature parameter is set to 0.02, and the ratio between the losses
is set to α : β : γ = 1 : 0.2 : 0.4.
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The dimension of the joint space is set to 768, which follows the
token dimension of the transformer encoders. All optimization is per-
formed using AdamW with the learning rate = 0.001.

4.3 Retrieval

Table 2: The Flickr30k(1k testing set) and MSCOCO(5k testing set) dataset re-
trieval performance. We compare the single-model performance among all multi-
modal retrieval models. The numbers are taken from Diao et al. [9] R@1 represents
Recall@1 for simplicity.

Flickr30k (1k testing set) MS-COCO (5k testing set)
image-to-text text-to-image image-to-text text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
SCAN [21] 67.4 90.3 95.8 48.6 77.7 85.2 50.4 82.2 90.0 38.6 69.3 80.4
VSRN [22] 71.3 90.6 96.0 54.7 81.8 88.2 53.0 81.1 89.4 40.5 70.6 81.1
CAAN [50] 70.1 91.6 97.2 52.8 79.0 87.9 52.5 83.3 90.9 41.2 70.3 82.9
IMRAM [3] 74.1 93.0 96.6 53.9 79.4 87.2 53.7 83.2 91.0 39.7 69.1 79.8
MMCA [42] 74.2 92.8 96.4 54.8 81.4 87.8 54.0 82.5 90.7 38.7 69.7 80.8
GSMN [24] 76.4 94.3 97.3 57.4 82.3 89.0 – – – – – –
SGRAF [10] 77.8 94.1 97.4 58.5 83.0 88.8 57.8 84.9 91.6 41.9 70.7 81.3
SHAN [16] 74.6 93.5 96.9 55.3 81.3 88.4 – – – – – –
WCGL [40] 74.8 93.3 96.8 54.8 80.6 87.5 – – – – – –
RCAR [9] 78.7 94.6 97.6 59.5 84.0 89.5 59.6 85.8 92.4 42.5 71.7 81.8

SGRAFS [15] 79.2 95.3 97.7 58.3 83.1 89.2 58.0 85.1 91.6 41.7 71.2 81.5
CLIP [30] 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2

GEMMA(Ours) 88.6 98.9 99.6 75.7 94.2 97.1 58.6 83.2 90.0 45.3 72.6 82.8

We conducted the experiments and compared our alignment ap-
proach to the SOTA retrieval models. The results are shown in Table 2.
We extract information from the frozen CLIP image and text encoder
in the experiments. The CLIP encoders remain frozen during further
alignments and serve as the baseline for our alignment process. The
CLIP encoder contains more than 428M parameters. However, we do
not fine-tune the overall encoder in our alignment process; instead, we
train additional alignment matrices. The trainable parameters can be
reduced from 428M to 9.43M (∼ 2.2%). The encoders remain untrain-
able during the training of alignment matrices. Therefore, GPU mem-
ory consumption is proportional to the trainable parameters, which can
be reduced to less than 10 percent of the fully fine-tuned approach.

In Flickr30k (1k testing set), our approach outperforms other image-
to-text and text-to-image retrieval methods. Alignment can improve
recall @ 1 by 0. 6% in image-to-text retrieval. Meanwhile, our ap-
proach provides a 6% boost in text-to-image retrieval. RCAR [9] needs
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dual-way optimized models, namely image-to-text and text-to-image.
Our method is optimized in a feed-forward manner, and it ensembles
the substructures directly.

In MS-COCO (5k testing set), our method provides competitive
performance in image-to-text retrieval and outperforms the others in
text-to-image retrieval by a boost of 2.1% in Recall@1. We achieve
the best text-to-image retrieval performance among the two datasets,
showcasing our approach’s scalability.

4.4 Generalizability

This section demonstrates the alignment between the visual/text en-
coders, which are trained separately. The encoders remain frozen in
the alignment process. All alignments are based on the grouping and
linear projection proposed in our pipeline. The performance of CLIP
visual and text encoders without GEMMA alignment is taken from the
original CLIP paper. [30] Starting from the jointly trained CLIP struc-
ture, we change the text encoders into the RoBERTa [26] and the visual
encoder into a CNN-based object detector [1]. All experiments are car-
ried out on the Flickr30k dataset and follow the parameter settings in
Section 4.2.

Table 3: The experiment results with different visual and text features for the
alignment process. All the experiments are conducted in the Flickr30k dataset.

Flickr30k (1k testing set)

Visual enc. Text enc. Alignment image-to-text text-to-image
(GEMMA) Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

CLIP vis [30] CLIP text [30] x 88.0 98.7 99.4 68.7 90.6 95.2
DETR [2] RoBERTa [26] v 66.7 89.5 93.6 56.7 84.5 90.3
DETR [2] CLIP text [30] v 73.6 91.6 94.5 60.0 85.8 90.6
CLIP vis [30] RoBERTa [26] v 86.3 98.2 99.4 73.2 94.2 97.2
CLIP vis [30] CLIP text [30] v 88.6 98.9 99.6 74.8 94.2 97.1

The results are shown in Table 3. The best performance comes
from the jointly trained models, whose representations are preliminar-
ily aligned in the pre-training process. Compared to the CLIP visual
encoder, the features of the object detector are weaker in the alignment
process. However, the separately trained text encoder, RoBERTa [26],
does not suffer from the unpaired training dataset. The representa-
tions from the CLIP visual encoder and the RoBERTa text encoder can
provide competitive performance in image-to-text retrieval and better
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performance in text-to-image retrieval than the original CLIP. The en-
coder can be adapted to the retrieval application without fine-tuning
with the paired image and text data.

In contrast, the Convolution Neural Network (CNN)-based object
detector representation cannot be applied directly to the image-text
retrieval task. The decrease in performance results from global un-
derstanding. The object detector features are obtained from part of
the image, and the representations lack a global understanding of the
image. As to CLIP visual encoders, the visual tokens’ pooled output
contains the input images’ global information and has detailed token
features for us to process further stage alignments. The visual example
can be found in Sec. 4.6. If the alignment process misses the global in-
formation in the very beginning, then the alignment process on detailed
information may lead to a misfocused result.

4.5 Ablation Study on Different Stages

Due to the modularized design, we can compare the design from global
alignment to subgroup alignment in the visual and textual domains. We
choose encoders trained in different modalities to perform the alignment
process. We use the CLIP visual encoder [30] and the RoBERTa [26]
text encoder for the ablation study of stage-wise alignment on Flickr30k
dataset [45]. The two encoders remain frozen in the experiments. The
‘without alignment’ setting means the direct dot product between the
encoded features from two models. The two embeddings are located in
different semantic latent spaces. Hence, the performance is the lowest
compared to the other alignment processes.

With global alignment, the features can provide basic performance
in retrieval tasks. However, a naive linear projection can not handle
complex interactions between detailed information in the candidate set.
Thus, recall rates increase as we add more stages in grouping, feature
selection, and alignment. Feature selection provides statistical criteria
for dimension reduction, preventing the latent dimension from increas-
ing with additional tokens. We can take the essential features into the
next stage and reduce computational cost simultaneously. Hence, the
three-stage alignment can achieve the best performance with compara-
ble efficiency.
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Table 4: Ablation Studies on different stages, where R@k presents the top-k re-
calls and #Param denotes the number of trainable parameters. All the experi-
ment is based on CLIP [30] visual encoder and RoBERTa [26] text encoder with
Flickr30k [45] dataset.

Alignment image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10

Without Alignment 64.5 71.7 84.3 32.7 61.6 80.1
Global 84.8 97.8 99.0 68.3 90.7 91.1

+Image Cluster 85.4 98.0 99.1 70.3 91.5 94.3
+Text Cluster (Final) 86.3 98.2 99.4 73.2 94.2 97.2

4.6 From Detection to Alignment

To better understand the difference between the visual features of trans-
formers and object detectors, we demonstrate the retrieval processing
step by step.

Figure 8: Error cases of object detector alignment. The object detector will give all
objects equal weights and try to include all the objects in the captions.

The object detector can detect humans and vehicles, but the fea-
tures lack a sensible relationship with each other. In the clustering
stage, the clusters will focus on the specific object in the figure, that
is, the bus in Fig. 8. In global alignment, the paired sentence is fifth.
However, the correct captions fall to the seventh when we perform the
finer alignment, which clusters on cars and buses. Although object de-
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tectors can provide information fragments, the grouping process cannot
link features. The detector features cannot find the central concept in
the picture, but can be distracted by the surrounding objects.

The object detector can provide the features with the local infor-
mation, yet the patched information is not represented in a structured
manner. That is, we can only obtain the partial contents in the image
and lose the global semantic representation in the clustering process.
We rely on the global and local information relationship to retrieve
suitable captions in the proposed coarse-to-fine clustering process.

On the other hand, the visual transformer can provide more infor-
mation about the tokens and integrate the representations through a
global pooling process. Hence, the token information can be selected
in our feature selection module (sec. 3.3) and clustered according to
the global features. The overall architecture can sort the rich repre-
sentation in a coarse-to-fine manner and provide a better multi-modal
alignment performance.

When comparing the alignment process across different features, it
becomes evident that performance is influenced by the types of features
used. However, the alignment process cannot transform weak visual
features into strong ones. Instead, it aims to bridge the gap caused
by differences in modality. Consequently, performance improves when
encoded features have larger receptive fields. The proposed alignment
does not require jointly fine-tuning the encoders in the limited paired
multi-modal data and generalizes the single-modal encoder with addi-
tional alignment matrices.

Table 5: Experiments on Detector Features

Flickr30k (1k testing set)
Vis Feat Text Feat image-to-text text-to-image

Global Feat Detail Feat Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10
CLIP CLIP CLIP 85.3 91.9 93.3 72.1 90.6 92.2

DETR encoder DETR decoder CLIP 18.3 35.1 41.8 19.5 25.3 45.9
ResNet Backbone DETR encoder CLIP 66.7 89.5 93.3 56.7 84.5 90.3
ResNet Backbone DETR decoder CLIP 72.4 91.6 95.1 59.5 85.7 90.5
ResNet Backbone DETR decoder RoBERTa 64.5 84.5 88.4 53.3 83.3 87.3
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5 Conclusion and Future Work

Our approach can achieve outstanding performance in both image-to-
text and text-to-image retrieval tasks. Furthermore, our method in-
volves a step-by-step alignment process that maintains compatibility
in the decision-making procedure. We divide the alignment into global
and subdomain matching and apply a feature selection method to de-
crease the input feature dimensions. All subprocesses can be expressed
mathematically and analyzed statistically, providing transparency com-
pared to black-box output. To ensure computational efficiency, we froze
the visual and text encoders and only trained the alignment matrices,
which represent only about 3% of the parameters compared to the orig-
inal model.

In addition, we conducted experiments on applying our alignment
mechanism to individually trained text and image encoders. In the
testing dataset, we found that the pre-trained text encoder can improve
the performance of text-to-image retrieval. Replacement of the text
encoder can also lead to similar performance in image-to-text retrieval.

We are working on developing a purely green learning solution for
image understanding in the foreseeable future. By aiming not only for
transparency but also computational efficiency, we can have a better
understanding of the multi-modal information representation.
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