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ABSTRACT 360◦ video has been applied to many areas such as immersive contents, virtual tours, and
surveillance systems. Compared to the field of view prediction on planar videos, the explosive amount of
information contained in the omni-directional view on the entire sphere poses an additional challenge in
predicting high-salient regions in 360◦ videos. In this work, we propose a visual saliency prediction model
that directly takes 360◦ video in the equirectangular format. Unlike previous works that often adopted
recurrent neural network (RNN) architecture for the saliency detection task, in this work, we utilize 3D
convolution to a spatial-temporal encoder and generalize SphereNet kernels to construct a spatial-temporal
decoder. We further study the statistical properties of viewing biases present in 360◦ datasets across various
video types, which provides us with insights into the design of a fusing mechanism that incorporates the
predicted saliency map with the viewing bias in an adaptive manner. The proposed model yields state-of-
the-art performance, as evidenced by empirical results over renowned 360◦ visual saliency datasets such as
Salient360!, PVS, and Sport360.

INDEX TERMS Visual saliency prediction, 360◦ videos, viewing bias, deep learning.

I. INTRODUCTION2

360◦ video, a new multimedia type, has become popu-3

lar due to its immersive experiences [1]–[3]. Compared to4

conventional planar videos, 360◦ videos [4] capture omni-5

directional field of view in one frame. We can enjoy this6

immersive experience by drag-and-drop the mouse on social7

media platforms or changing our head and eye movements8

with head-mounted display devices. Consumer can even cre-9

ate a 360◦ video with an off-the-shelf 360◦ camera, such10

as Insta360, Samsung Gear360, or Ricoh Theta, and shared11

them on Facebook or YouTube.12

The emerging of 360◦ videos shows that 360◦ videos will13

become a major video format in the near future. However,14

it’s hard for users to explore a whole frame of 360◦ videos15

because users cannot observe the content outside the FoV16

associated with human eyes; users need to change the view-17

ing angles regularly to see the whole 360◦ environment. To18

relieve the issue, methods of human visual saliency pre-19

diction that focused on modeling human visual attention20

and identifying users’ interest in 360◦ videos are recently21

developed [5]–[8].22

Nowadays, methods modeling 360◦ visual saliency (VS)23

prediction are still limited. Although there are dozens of24

VS prediction models available for planar videos [9]–[11],25

such models are not suitable to the 360◦ video which has26

its own characteristics that must be taken into consideration.27

First, 360◦ videos are generally presented in equirectangular28

projection format which oversamples points in polar regions.29

Second, in planar videos, a gaussian kernel center bias is30

usually added into the prediction since users tend to watch31

the center part of an image [12], [13]. However, since 360◦32

videos capture the whole picture with no dead spots, the33

human viewing bias might be different from that in planar34

videos. The viewing bias in 360◦ videos might be more35

complex because users can get more content information36

with multiple viewpoints [14]. Besides, users start to watch37

360◦ videos from the same viewing points no matter through38

VR head mounted devices or Youtube by PC, since the39

start-viewing point are fixed by 360 cameras. Nevertheless,40

currently, no visual saliency models possess the initial frame41
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FIGURE 1. The overview of our model architecture. The encoder consists of S3D block, while the decoder is built with 3DSphereNet layers with trilinear
interpolation upsampling layers. The last two layers of the decoder are 1 × 1 convolutional layers. The Center Bias Fusing Block fuses the three bias maps with the
output of the decoder in pixel-wised manner by 1 × 1 convolution. Finally, the Initial Frame Center Bias(IFCB) module adds the IFCB map of a specific dataset and
the time factor dependent on the frame number (see eq.2) to predict the final output VS map.

center bias effectively [8] which is an inevitable phenomenon42

of immersive videos as we have observed in the statistical43

data. The data type in 360◦ VS prediction can be separated44

into head movement (HM) and head+eye movement (HEM).45

The former determines the FoV regions seen by users when46

moving their heads, while the latter predicts users’ eye gaze.47

We focus on HM saliency prediction in this paper since HM48

could be seen as the first step toward human attention [7].49

In this paper, we proposed a 3D U-Net VS model with the50

combination of human viewing biases. Our model applies51

to equirectangular projection frames directly without any52

projection transformation. To cope with the oversampled53

polar regions in equirectangular frames, we introduced the54

3D SphereNet specially desinged for 360◦ data and placed55

this module into the U-Net decoder. With the observation56

of the time-decay human viewing bias which is a special57

phenomenon in panorama videos, we proposed the inital58

frame center bias fusing methods, and analyzed the viewing59

biases between various 360◦ video VS datasets. Finally, with60

the aware of viewing bias observations, the Center Bias61

Fusing Block is proposed to fuse the well-founded viewing62

biases effectively. Empirical results on Salient360! [15], PVS63

[7] and Sport360 [6] datasets demonstrate the effectiveness of64

the proposed method.65

The main contributions can be summarized as follows:66

• With the observation of various initial viewing bias67

between datasets, we propose a learnable time-decay68

function to fuse the prediction map with different initial69

viewing bias effectively.70

• We design center bias fusion block that improves the71

result of saliency prediction by considering the center72

bias statistics of different datasets and video categories.73

• We extend SphereNet from 2D to 3D by applying the74

U-net model with 3D convolution and 3DSphereNet75

Decoder to deal with temporal data input.76

II. RELATED WORK77

A. VISUAL SALIENCY ON PLANAR VIDEOS78

Most visual saliency (VS) prediction on videos have been79

done by deep convolutional neural networks. Different from80

VS prediction on images, temporal features are also con-81

sidered in the VS video task. A majority of recent studies82

adopted recurrent neural networks to predict sequential fixa-83

tion maps over successive frames. Wang et al. [13] applied84

attentive CNN-LSTM network to extract both static and85

dynamic saliency features. Wu et al. [16] extracted temporal86

information by a correlation-based ConvLSTM [17] which87

integrates the correlation information between frames. Droste88

et al. [18] made an unified model that predicts both images89

and videos with MobileNet and LSTM network.90

Recently, 3D convolutional layers are also used in VS91

prediction tasks on planar videos. Some methods relied on92

the S3D architecture [19] which is a typical action detection93

backbone. Min et al. [10] was the first to introduce the S3D94

backbone into VS prediction task as the encoder that ex-95

tracted spatial-temporal information. [9] used S3D bockbone96

as the U-Net encoder and added the auxiliary audio networks97

to predict audio-visual saliency.98

Wang et al. [20] also adopted S3D backbone as the encoder99

backbone. For the decoder part, they applied self-attention100

mechanism to capture spatio-temporal information at multi-101

ple levels of the encoder. Further, considering the information102

gap between feature maps of different levels, they proposed103

AMSF module to integrate captured features from different104

levels.105

Chang et al. [11] stacked feature pyramid network on106

top of the S3D encoder features and aggregated multi-scale107

feature maps to predict visual saliency. All these methods108

[9]–[11] achieved outstanding performance on planar video109

VS datasets, such as DHF1K [13]. While ConvLSTM [17]110

extracted temporal information only from the hidden state111

of the propagation from the succesive previous frames, 3D112

convolution [21] captured the temporal features encoded in113

multiple adjacent frames.114
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FIGURE 2. (a), (b) and (c) are the CC, NSS, KLD score of IFCB map of the three datasets respectively. ?? is an illustration of equation 2. The slope of the curve
becomes steeper as alpha increases..

B. VISUAL SALIENCY ON 360◦ VIDEOS115

Some learning-based methods on 360◦ videos also emerged116

in the past three years. CubePadding [5] learned the model117

by weakly supervised learning with optical flow and video118

frames in the cubemap format. However, CubePadding was119

not suitable for static videos which do not have much120

optical flow features. Besides, CubePadding needed extra121

calculation to transform equirectangular frames into cube122

faces. SpherePHD [22] represents the spherical images on123

an icosahedron, and designs the convolution kernel under124

this representation. Spherical DNN [23] employs a circular125

crown kernel on the sphere instead of SphereNet using the126

traditional square kernel. Spherical U-Net [6] introduced a127

spherical convolution, involving the rotation of the crown128

kernel along the sphere, to tackle with the distortion of 360◦129

videos in equirectangular frames. Spherical U-Net learned130

the model by teacher-forcing [24] that the ground-truth of131

previous frames were fed into the model during training and132

inferenced the result with previous predictions of the model,133

causing the performance degraded over time as the prediction134

becoming less accurate. DHP [7] proposed deep reinforce-135

ment learning (DRL) approach to predict head movement136

saliency map in an offline manner. They first transformed a137

specific subject’s FoV regions into rectilinear projection and138

applied DRL prediction. However, during inference stage,139

DHP needed to run live fixation points of a specific user and140

later on collected several users’ predicted fixation points to141

generate the saliency maps, which was inefficient. SPN [8]142

took optical flow and frames in the cubemap format as mo-143

tion and spatial information and adopted Bi-ConvLSTM to144

extract temporal features. However, SPN needed extra com-145

putational costs on generating optical flow and the cubemap146

transformation. Although SPN considered human viewing147

bias by fusing different gaussian prior maps into feature maps148

by convolution layers, the gaussian prior maps used by SPN149

were chosen without the support of human viewing analysis150

in different datasets and video contents. In order to deal with151

initial viewing bias, SPN fused the average saliency map152

with optical flow motion features by element-wise product.153

However, this method ignored the time factor of initial frame154

viewing bias and the videos with less optical flow features,155

such as scenery videos.156

III. METHOD157

TABLE 1. The proportion of video categories in different datasets.
Miscellaneous refers to videos that do not belong to the four main categories.

Dataset
Video Type Exploration Static Moving Rides Miscellaneous Number of Video

Salient360! 42.10% 26.31% 15.78% 10.52% 5.26% 19
PVS 14.66% 12.00% 21.33% 28.00% 24.00% 75

Sport360 0.96% 2.88% 76.92% 19.23% 0.00% 104

TABLE 2. The CC score improvement of fusing each center bias maps in
Fig.5.

Video type
Prior maps

Fig.5 (a) Fig.5 (b) Fig.5 (c) Fig.5 (d)

Exploration 5.52% 3.18% 2.10% 1.51%
Moving Focus -1.78% -0.40% -0.27% -0.46%
Static Focus -1.05% 2.47% 4.46% 2.63%

Rides 12.95% 0.69% 0.27% 4.50%

A. NETWORK STRUCTURE158

1) Spatial-Temporal Encoder.159

The proposed model architecture is composed of an encoder160

followed by a decoder with multi-branch skip connections, as161

illustrated in Fig.1. The encoder is S3D network [19] extract-162

ing spatial-temporal features through 3D convolution and 3D163

maxpooling. We use S3D network since it replaces standard164

3D convolution with the separable spatial and temporal con-165

volutional blocks which encode the spatial-temporal infor-166

mation efficiently with lower computational costs. Moreover,167

the pre-trained weight of S3D network on the Kinetics dataset168

[25] which is a large action-recognition dataset is available,169

making it fast and effective for transfer-learning on the lim-170

ited visual saliency data. Thus, we use the pre-trained S3D171

weight as the initial weight of the encoder. The input of the172

encoder is a sequence of T frames {It−T+1, ..., It}, where It173

is the equirectangular frame of the video at time t. Then the174

encoder extracts four scales of spatial-temporal feature maps:175

F1, F2, F3, F4 as the later input of the decoder, where F1, F2,176

F3, F4 are 1/4x, 1/8x, 1/16x, and 1/32x to the original input177

frames respectively.178

2) 360 Kernel Decoder.179

While the encoder contains standard convolutional kernel,180

the decoder consists of 3D SphereNet layers which are 3D181
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FIGURE 3. Top row: IFCB maps. Bottom row: Average saliency maps with frame number over 100.

FIGURE 4. The averaged saliency maps (normalized to [0, 1]) with frame number over 100 of four main video catogries over various datasets. Note that we only
illustrate salieny maps that are Rides and Moving Focus types in Sport360 since most of the videos within belong to these two categories, while the Exploration and
Static Focus video types are too few to be of statistical significance.

kernels expanded from SphereNet [26] used in 360◦ image182

classification and object detection. Due to the oversampling183

around the polar regions in equirectangular projection, we184

adpot SphereNet kernels which are able to extract repeat-185

ing features into our decoder module. SphereNet calculates186

the coordinates of input pixel of convolution by inverse187

gnomonic projection from the center of kernel. Besides, in188

order to avoid discontinuities in equirectangular projection,189

SphereNet automatically wraps the sampling points at the190

left and right boundaries. We extend SphereNet from 2D to191

3D by applying the U-net model with 3D convolution and192

3DSphereNet Decoder to deal with temporal data input. To193

extend SphereNet from 2D to 3D, we sample the input coor-194

dinates by an inverse gnomonic projection, which is adapted195

in SphereNet among spatial dimensions, and use trilinear196

interpolation [27] for sampling among temporal dimensions.197

The inputs of the decoder are F1,F2,F3, and F4. Except198

for F1, the three feature maps: F2, F3, and F4 are passed199

into the decoder using skip connection and concatenated200

with the feature maps. F1 and the concatenated feature maps201

are decoded by 3D SphereNet layers and are upsampled by202

trilinear interpolation method. Finally, the decoder outputs a203

visual saliency prediction map of time t that corresponds to204

the last frame It of the encoder input sequence.205

B. INITIAL FRAME CENTER BIAS206

It is a common practice for users to start exploring the 360◦207

videos in the same Field of View (FoV). In other words,208

users tend to watch the same portion of 360◦ frames, namely209

the same longitude and latitude coordinates, at the very210

beginning of 360 videos. In fact, this initial frame center211

bias is common in 360◦ visual saliency dataset, because the212

start-watching point is determined by the devices, such as213

360 cameras. [8] considered the initial frame center bias by214

considering both center bias map and the motion features215

with residual mechanism. However, this method ignored the216

vanishing phenomenon of the initial center bias over time.217

We designed the initial frame center bias (IFCB) fusing218

method based on our statistical findings over three datasets:219

Salient360! [15], PVS [7], Sport360 [6] with the CC, NSS,220

and KLD metrics; both the dataset descriptions and metric221

details can be found in Section Experiment. We compute the222

average of the first visual saliency frames from the training223

data of the three datasets, which we refer as IFCB map (the224

top row of Fig.3) and calculated its CC, NSS and KLD225

scores with ground-truth saliency maps. In Fig.2, the score226

of IFCB maps from three datasets are shown respectively.227

Obviously, in all datasets, the CC and NSS scores of IFCB228

maps are extremely high at the initial frames and gradually229

degrade as the time increases, which indicates that users230

spread their view from the same starting point and looked231

around independently. The low KLD scores at the initial232
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FIGURE 5. 5(a)- 5(c) are gaussian map generated by eq.3 with the same means: µx = µy = 0.5 and standard deviation: (σx, σy) = (0.5, 0.02),
(σx, σy) = (0.15, 0.02), (σx, σy) = (0.06, 0.02), respectively. 5(d) is the IFCB map of Salient360.

frames also imply that the probability distribution of IFCB233

map pixels is similar to that of the ground truth at the234

beginning. Therefore, adding IFCB maps and the time-decay235

factor into the prediction procedure should be beneficial.236

The initial frame center bias of the three datasets are237

slightly different. In Salient360! dataset, the start-watching238

points are at longitude 0◦ or the opposite 180◦ (the top row239

of Fig.3(a). In PVS and Sport360 dataset, the users all start240

looking from longitude 0◦ with some latitude offsets (the top241

row of Fig.3(b) - 3(c). Furthermore, in Fig.2, the declining or242

rising rate of the evaluation scores various between datasets.243

For example, the CC score of the Sport360 IFCB map de-244

creases drastically from score 1 to 0.4 within 50 frames. On245

the other hand, the CC score of PVS IFCB map reduces at246

a slower rate from score 1 to 0.7 within 100 frames. Con-247

sidering the existing IFCB difference between datasets, we248

propose an adaptive weighting method to dynamically learn249

the fusing weights of IFCB map and the decoder prediction250

map with a time-decaying function. Here, for simplicity, we251

assume the weighted fusing mechanism is given as252

Pt = wt × IFCB + (1− wt)×Dt, (1)

where Dt represents the output saliency map of the decoder253

at time t, and Pt is the final prediction saliency map as a254

linear combination of Dt and IFCB with adaptive weight255

wt. Based on the observed time-dependence of the evaluated256

CC, NSS, KLD scores of IFCB to the ground-truth saliency257

maps (Fig.2(a) - 2(c)), we adopt a Gaussian decay function258

(Fig.2(d)) for the adaptive weight as follows:259

wt = exp(−α(t/C)2), (2)

where C is a constant which we set as 600 in our experi-260

ments. Instead of being fixed, α is automatically learned by261

fine-tuning the whole model. Here we frame the weight as a262

decay function. Because as the 360 video plays, according to263

our observation, the user’s sight gradually spreads out from264

the center to varying extents in different video categories.265

C. POTENTIAL CENTER BIAS266

1) Center Bias Analysis267

Human attention might have varying viewing bias when268

watching panoramic videos. In order to have a further obser-269

vation on human viewing center bias, we analyze the ground-270

truth saliency maps of each dataset and different video cate-271

gories and have the following findings. Finding(1): Datasets272

exist distinct center bias. Finding(2): Fusing different kinds273

of center bias improves the performance variously in four274

video categories.275

First, we average the saliency maps with frame number276

over 100 of the three datasets as shown in the bottom row277

of Fig.3. From Fig.3, we can see that PVS has a strong278

center bias without a doubt. On the contrary, Salient360! has279

a little bias at the equator, and Sport360 has almost no center280

bias. This indicates that various datasets exist with different281

degrees and distributions of center viewing bias, which is282

our Finding(1). Second, according to a study in [28] which283

shows that the Region of Interest (ROIs) that attracts human284

attention depends on the video content itself, we manually285

classify the videos of the three datasets into four categories286

(Table 1):287

• Exploration: Users tend to explore the entire sphere288

since there is no particular object or moving direction289

in scenes, such as landscape.290

• Static Focus: The salient objects are standstill at the291

frame center, such as music concert.292

• Moving Focus: There are eye-catching objects moving293

over the sphere in the video, such as sport videos.294

• Rides: Videos are shoot with camera fast moving for-295

ward to a specific direction, such as car driving videos.296

We average and normalize the ground-truth saliency maps297

with frame number over 100 of each category, as illustrated298

in Fig.4. To observe the impact of various center biases299

on different video categories, we fuse four kinds of center300

bias maps in Fig.5 which have different coverage on the301

equator into our Salient360! prediction output with linear302
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combination. Note that the first to third center bias maps in303

Fig.5 (a)-(c) are generated by the equation as follows.304

f(x, y) =
1

2πσxσy
exp

(
− (x− µx)

2

2σ2
x

− (y − µy)
2

2σ2
y

)
(3)

The means µx and µy both equal to 0.5 in the first to third305

center bias maps Fig.5 (a)-(c); the standard deviations are306

σy = 0.02 and σx = 0.5, 0.15, 0.06, respectively. The fourth307

center bias map 5 (d) is the IFCB map of Salient360!. In308

Table 2, by fusing the aforementioned four kinds of center309

bias maps, the CC scores are improved in different degrees310

depending on the video category. It appears that the Moving311

Focus video type does not benefit from the center bias. This312

may be because the eye-catching moving objects appear313

irregularly in various places near the equator. As for the314

Exploration category, the improvement grows as the cover-315

age on the equator becomes larger in center bias map. Since316

Exploration type videos lack salient objects, users attention317

spread along the equator instead of focusing on the same318

point. The Static Focus video type consists of an obvious319

object in the frame center, so it benefits the most from the320

center spot bias (Fig.3 (c)). Finally, we observe that the Rides321

category videos benefit the most from center bias map that322

has little dependency on the longitude. Since users tend to323

watch in the direction of the camera motions, which happen324

to be at longitude 180◦ in videos that we test in Table 2, the325

center biases as depicted in 5 (a) and 5 (d), having values on326

the 180◦ longitude region, make the more improvement.327

2) Learned Center Bias Fusing328

Through the two findings in Section.III-C-Center Bias Anal-329

ysis, we have a better understanding of the viewing bias in330

three datasets:331

1) Sport360: The video category classification results in332

Table 1 shows that videos in Sport360 mostly belong333

to the Moving Focus type, which implies that sport360334

exhibits nearly no center bias, supported by our Find-335

ing(2).336

2) PVS: Compared with the other two datasets, the pro-337

portion of each video category in PVS is relatively338

average (Table 1), but the viewing biases have few339

differences in the four video categories (Fig.5). Obvi-340

ously, PVS itself exists strong center bias in all video341

categories, supported by our Finding(1).342

3) Salient360!: Different from PVS, Salient360! has a343

little bias at the equator according to our Finding(1).344

Besides, there are up to 40% videos belong to Explo-345

ration type in Salient360! which benefit more from346

equator center bias. Thus, the equator viewing bias347

existing in Salient360! can also be partially explained348

by our Finding(2).349

According to the understanding that we conclude above, it350

is necessary to manage the different extents of center bias351

among datasets. Through the analysis of composition of the352

three datasets (Table 1 ), PVS composes more of spot center353

bias, while Salient360! consists more of equator bias. On354

the other hand, Sport360! contains nearly no viewing bias.355

Thus, We introduce Center Bias Fusing Block(CBFB) (Fig.356

1). In CBFB, we concatenate equator bias map 5(a), the spot357

center bias, zero bias map denoting no bias, and the output358

map of the decoder (Fig.1). Note that we use IFCB map as359

the spot center bias map since the initial watching regions360

set by the camera devices are also the center regions of the361

video. We then pass the concatenation map into an one-362

by-one convolution, learning the fusing weight by weighted363

sum. The CBFB module learn the fusing weights of different364

viewing biases from the given training data. Finally, the365

whole model is trained with IFCB and CBFB.366

IV. EXPERIMENT367

A. DATASET368

• Salient360!: The dataset Salient360! [15] is a bench-369

mark carried out by Salient360! Grand Chanllenges370

at ICME’17 and ICME’18 for 360◦ image and371

video saliency prediction. The benchmark provides 19372

equirectangular 360◦ videos each lasting 20 seconds373

with head movement saliency maps recorded from 57374

subjects [29].375

• PVS: PVS dataset [7] includes 75 omnidirectional376

videos each lasting 10 to 80 seconds with head move-377

ment saliency maps recorded from 58 subjects. The378

video contents are diverse, including animation, driving,379

sports, movies and scenery. The author of PVS splits the380

data into 60 training videos and 15 testing videos.381

• Sport360: The videos of Sport360 are from [30] with382

the head movement saliency maps collected by [6].383

Sport360 contains 104 360◦ sport videos, such as bas-384

ketball, skateboarding and parkour, with the duration of385

20 to 60 seconds viewed by 20+ subjects. Following the386

settings in [6], we use 80 video sequences for training,387

and 24 video sequences for testing.388

B. IMPLEMENTATION DETAIL389

1) Loss Function390

Our saliency prediction model is trained by minimizing an in-391

tegration of several well adopted evaluation metrics. Here we392

take the combination of Kullback-Leiber divergence(KLD),393

Pearson’s Correlation Coefficient(CC) and Normalized Scan-394

path Saliency (NSS) metrics as our loss function in the395

following expression:396

L(P,Qd, Qf ) =λKLKL(P,Qd)−
λCCCC(P,Qd)−
λNSSNSS(P,Qf ),

(4)

where we take λKL = 2, λCC = 0.8, λNSS = 0.05397

empirically. The notations are given below:398

• P : The predicted saliency map.399

• Qf : The binary fixation ground-truth map that refer to400

the original fixation locations.401
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FIGURE 6. (a), (b), and (c) are the CC score of Salient360!, Sport360 and PVS with and without the IFCB module and CBFB module. The final result of IFCB
fusing weights were also shown.

FIGURE 7. The saliency map visualization of the ground-truth(left), our 3D SphereNet (middle), and the standard 3D convolutional U-Net (right).

• Qd: The density distribution ground-truth map that is402

smoothed by the Gaussian kernel on Qf [31].403

• The NSS metric is specially designed for saliency maps404

[32] and is defined as405

NSS(P,Qf ) =
1

N

∑
i

P̄i ×Qf
i , (5)

where i refers to the ith pixel in Qf and P respectively.406

N =
∑

i Q
f , and P̄ = P−µ(P )

σ(P ) where µ and σ are mean407

and standard deviation of P .408

• The CC metric measures the correlation between two409

distributions as410

CC(P,Qd) =
cov(P,Qd)

σ(P )× σ(Qd)
, (6)

where cov(P,Qd) stands for the covariance of P and411

Qd, and σ(·) denotes the corresponding standard devia-412

tion.413

• The KLD measures the dissimilarity between predicted414

saliency and ground-truth distribution which is defined415

as416

KL(P,Qd) =
∑
i

Qd
i log

(
ϵ+

Qd
i

ϵ+ Pi

)
, (7)

where ϵ is a regularization constant.417

2) Training and Testing418

Our implementation is on top of PyTorch framework [33].419

The model is trained in two stages. First, we train the encoder420

initialized with weights pre-trained on the Kinetics dataset421

[25], and the decoder from scratch until they converge. Then422

we train the full model in the second stage, including CBFB423

and IFCB. The Adam optimizer is used with the learning424
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rate 1 × 10−4 at the first stage and 1 × 10−5 at the second425

stage. The input sequence length is 32 and in equirectangular426

format without any projection transformation with batch size427

4. All frames are resized to 224 × 384. For Salient360!428

dataset, we split the data into 15 videos for training and 4 for429

validation. As for PVS dataset, we randomly split the training430

data into 50 training videos and 10 validation videos. When431

training on Sport360 dataset, we choose 10 videos randomly432

as validation data, and the rest 70 videos as training data. We433

evaluate our model on the testing videos used in DHP [7]434

and Spherical-Unet [6] of PVS dataset and Sport360 dataset435

respectively. As for Salient360!, since the ground-truth of the436

testing data is not available, we evaluate our model on the437

validatation set.438

3) Evaluation Metric439

In addition to evaluating our method with KLD, CC and NSS440

metrics, we also consider Similarity(SIM), AUC-Judd and441

shuffled-AUC metrics [34]. The details of these metrics can442

be found in [31].443

In view of the heavy distortion near the pole regions under444

equirectangular projections, the Salient360! benchmark cor-445

rected the oversampled pole areas by applying a latitudinal446

sinusoidal factor [29] to the saliency maps during evaluation.447

Here we also report the results adjusted by the latitudinal448

sinusoidal factors with asterisk symbol (∗).449

C. EXPERIMENTAL RESULT450

1) Ablation Study451

We perform ablation studies to evaluate the contribution452

of each component of the proposed network. In Table 3,453

we compare our modules with standard 3D convolution U-454

Net. All the components, including 3DSphereNet decoder,455

IFCB, and CBFB improve the performance in some extent.456

The 3D SphereNet decoder enhances most of the evaluation457

metric score except for the KLD/AUC-Judd score in PVS458

and the CC/NSS score in Sport360. With the combination459

of 3D SphereNet decoder and IFCB module, the CC score460

improved about 3.1% on Salient360!, 1.34% on PVS and461

1.76% on Sport360. Besides, from Fig.6, the CC scores of the462

initial frames are raised with the IFCB module. As for CBFB463

module, the CC scores increase 2.31% on Salient360!, 4.73%464

on PVS, and 0.36% on Sport360. The different magnitudes465

of the progress between the three datasets correspond to our466

first finding that different datasets exhibit distinct degrees of467

center bias (Section.III-C-Center Bias Analysis).468

2) Quantitative Result469

We compare our model with state-of-the-art 360◦ video vi-470

sual saliency models including ViNet [9] dealing with planar471

video, STSANet [20], Spherical U-Net [6], DHP [7], SPN472

[8], V-BMS [35], MT-DNN [36] and Spherical DNN [23]. In473

order to show the effectiveness of IFCB fusing by eq.1, we474

used IFCB maps directly as our baseline. Our model beats475

the baseline in all three datasets. Table.4, Table.5 and Table.476

6 show the quantitative results of the different methods.477

TABLE 3. The ablation study on the effectiveness of various modules in the
proposed model. Standard-3DUnet refers to the U-net model with 3D
Convolution, and 3DSphereNet is the 3DUnet with our 3DSphereNet Decoder.

Salient360!

Method
Metrics CC↑ NSS↑ KLD↓ SIM↑ AUC-J↑

Standard-3DUnet* 0.3998 1.7924 6.6621 0.3212 0.8749
3DSphereNet* 0.4336 1.9402 6.4355 0.3325 0.8852

3DSphereNet* w/ IFCB 0.4645 2.2537 5.9410 0.3599 0.8891
3DSphereNet* w/ IFCB w/ CBFB 0.4877 2.3502 5.7021 0.3759 0.8927

PVS

Method
Metrics CC↑ NSS↑ KLD↓ SIM↑ AUC-J↑

Standard-3DUnet* 0.6863 3.3031 3.8697 0.5115 0.9280
3DSphereNet* 0.7069 3.3820 3.8869 0.5184 0.9272

3DSphereNet* w/ IFCB 0.7203 3.5330 3.4999 0.5395 0.9295
3DSphereNet* w/ IFCB w/ CBFB 0.7676 3.7498 3.2084 0.5661 0.9325

Sport360

Method
Metrics CC↑ NSS↑ KLD↓ SIM↑ AUC-J↑

Standard-3DUnet* 0.6482 4.4184 5.3503 0.4605 0.9360
3DSphereNet* 0.6449 4.3638 5.0717 0.4654 0.9370

3DSphereNet* w/ IFCB 0.6625 4.5393 4.8101 0.4790 0.9375
3DSphereNet* w/ IFCB w/ CBFB 0.6661 4.5860 4.8529 0.4793 0.9402

TABLE 4. The comparison on the testing data of PVS, where the asterisk
symbol (∗) represents the results adjusted by the latitudinal sinusoidal factors
and the dagger symbol (†) represents the reproduced testing result, otherwise
it is testing result reported by original paper.

Method
Metrics

CC↑ NSS↑ sAUC↑

baseline† 0.633 3.243 0.519

ViNet† 0.633 2.447 0.643

STSANet† 0.743 3.538 0.806

STSANet w/IFCB w/CBFB† 0.6 2.827 0.799
DHP 0.704 3.275 0.700

Spherical U-Net† 0.745 3.175 0.700
MT-DNN 0.675 3.115

SPN*† 0.767 3.289 0.752

SPN* w/IFCB w/CBFB † 0.783 3.607 0.792

3DSphereNet† 0.7069 3.382

3DSphereNet w/IFCB w/CBFB† 0.757±0.005 3.768±0.029 0.820±0.004
3DSphereNet* w/IFCB w/CBFB† 0.768±0.005 3.760±0.031 0.818±0.004

We had added initial frame center bias (IFCB) and Center478

Bias Fusing Block (CBFB) to SPN and STSANet. SPN is the479

current state-of-the-art saliency prediction model proposed480

on 360 videos, and STSANet is proposed on the planar481

video. The experimental results provided in Table.4, Table.482

5 and Table. 6 show that adopting IFCB and CBFB to483

SPN and 3DSphereNet enhances the evaluation metric score484

compare to our reproduced results. However, adopting IFCB485

and CBFB to STSANet does not as good as the proposed486

model. We presume that our proposed IFCB and CBFB can487

be applicable to the model designed for 360 videos. On the488

other hand, We reproduced SPN model according to SPN489

paper description to the best of our knowledge. However,490

the reproduced results do not meet those reported by [8]491

(see supplementary materials for more details). Due to the492

absence of testing ground-truth of Salient360!, we only com-493

pare with ViNet and DHP which are reproducible with their494

open source code on the validation set (Table 6). We also495

upload the testing result of Salient360! onto the benchmark496

website, and achieve the best results (Table 6) on CC, NSS,497

KLD, SIM metrics. 1
498

1https://mmcheng.net/videosal/
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TABLE 5. The comparison on the testing data of Sport360.

Method
Metrics

CC↑ NSS↑ AUC-J↑

baseline† 0.1761 1.0931 0.2535

ViNet† 0.6320 4.3845 0.9244

STSANet† 0.682 4.316 0.906

STSANet w/IFCB w/CBFB† 0.624 3.665 0.894

DHP† 0.4445 2.5913 0.8744
Spherical U-Net 0.6246 3.5340 0.8977

SPN*† 0.4377 3.9351 0.931

SPN* w/IFCB w/CBFB† 0.6054 4.9311 0.9425
3DSphereNet*† 0.6449 4.3638 0.9370

3DSphereNet w/IFCB w/CBFB† 0.6627±0.003 4.5804±0.039 0.9299±0.002

3DSphereNet* w/IFCB w/CBFB† 0.6668±0.003 4.5674±0.039 0.9399±0.001

TABLE 6. The comparison on the validation data of Salient360!. The last row
is our model result on the testing data of the Salient360! benchmark.

Method
Metrics

CC↑ NSS↑ KLD↓ SIM↑ AUC-J↑

baseline† 0.216 1.130 12.768 0.198 0.402

ViNet† 0.400 1.846 6.694 0.314 0.873

STSANet† 0.354 1.578 1.889 0.297 0.851

STSANet w/IFCB w/CBFB† 0.257 1.203 2.436 0.25 0.757

DHP† 0.175 1.052 15.453 0.2007 0.474
V-BMS 0.383 1.614 4.995 0.815

Spherical DNNs 0.4087 0.6989 0.6594

3DSphereNet*† 0.4336 1.9402 6.4355 0.3325 0.8852

3DSphereNet* w/IFCB w/CBFB† 0.483±0.004 2.315±0.030 5.850±0.113 0.369±0.005 0.892±0.001
3DSphereNet* w/IFCB w/CBFB† (Testing) 0.471 2.087 3.044 0.432 0.817

3) Qualitative Result499

We compare our model with the standard 3D convolutional500

U-Net using the visualization result of the saliency map, as501

demonstrated in Fig. 7. In Fig. 7, standard 3D convolution502

fails to detect distorted salient areas nearby polar regions,503

such as the flying bike’s wheel or the flying basketball.504

Moreover, the 3D convolution will pay more attention to the505

salient object on the equator instead of the distorted legs on506

the skateboard in the third row of Fig.7. By applying 3D507

SphereNet, the model can detect salient distorted areas that508

appear in the panorama.509

V. DISCUSSION510

In this section, we point out future works and the limitations511

of our model. The limitations of our model are listed below:512

1) There are few 360◦ visual saliency datasets and bench-513

marks, we could only train our model on the currently514

existing three datasets, which are also used in the515

previous works. We are willing to apply our proposed516

model to other types of videos when such datasets are517

available.518

2) The inference speed of the proposed model is not fast519

enough to apply to real-time visual saliency prediction,520

which is also a critical issue in the practical application.521

Unlike previous works focusing on planar (2D) videos, we522

focus on 360 (3D) videos. The immersive experience brought523

by 360 videos allows the users to have various viewing524

angles to watch, which causes the viewing bias that does not525

exist in planar videos. The viewing bias is a special viewing526

phenomenon in 360 videos; therefore, it is important to face527

up to the viewing bias issue and improve our 360 model. We528

list several future works as follows:529

1) Collect more videos to further verify our model’s530

generalization ability and the proposed viewing bias531

method.532

2) Further adjust the architecture of the proposed model533

to make it more lightweight for practical applications.534

VI. CONCLUSION535

In this paper, we address the special phenomenon caused536

by initial frame viewing bias existing in 360◦ videos us-537

ing learnable time-decaying curves, coping with the various538

time-decay rates among datasets. It is to our observation that539

datasets need various viewing biases based on the analysis540

of saliency maps across different datasets, video types and541

the improvements using multiple center bias maps. Thus, the542

proposed center bias fusing block learned to find the proper543

weights of different bias maps of each datasets. We utilize544

3D convolution to a spatial-temporal encoder and propose545

3D SphereNet ketnerls for the decoder in order to deal546

with the oversampling of feature maps in polar regions. The547

proposed method achieve the state-of-the-art results on three548

publicly available 360◦ visual saliency datasets, including549

Salience360!, PVS, and Sport360.550
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