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 A B S T R A C T

Human–Object Interaction (HOI) detection is a fundamental task in image understanding. While deep-
learning-based HOI methods provide high performance in terms of mean Average Precision (mAP), they are 
computationally expensive and opaque in training and inference processes. An Efficient HOI (EHOI) detector 
is proposed in this work to strike a good balance between detection performance, inference complexity, and 
mathematical transparency. EHOI is a two-stage method. In the first stage, it leverages a frozen object detector 
to localize the objects and extract various features as intermediate outputs. In the second stage, the first-stage 
outputs predict the interaction type using the XGBoost classifier. Our contributions include the application of 
error correction codes (ECCs) to encode rare interaction cases, which reduces the model size and the complexity 
of the XGBoost classifier in the second stage. Additionally, we provide a mathematical formulation of the 
relabeling and decision-making process. Apart from the architecture, we present qualitative results to explain 
the functionalities of the feedforward modules. Experimental results demonstrate the advantages of ECC-coded 
interaction labels and the excellent balance of detection performance and complexity of the proposed EHOI 
method. The codes are available: https://github.com/keevin60907/EHOI—Efficient-Human-Object-Interaction-
Detector.
. Introduction

Human–Object Interaction (HOI) detection is essential for image 
nderstanding (Chao et al., 2018; Gupta et al., 2019). The labels in 
OI datasets are triplets in the form of <Human-Interaction-Object>. 
he detector needs to know not only the bounding boxes of the human 
nd objects but also the class labels of the objects and the types of 
nteraction. HOI detection is a human-centric application and can be 
urther applied to the image understanding task, such as visual question 
nswering and image captioning. HOI detection can be challenging, as 
llustrated in Figs.  1 and 2. The examples are taken from a popular HOI 
etection dataset, HICO-DET (Chao et al., 2018). Images may contain 
he label ‘no_interaction’, but not every ‘no_interaction’ human–object 
air is labeled. Furthermore, some images may share the same verb 
n different scenarios, known as verb polysemy (Zhong et al., 2021).
Another challenge in HOI detection is the imbalanced distribution of 

nteraction pairs in the training samples. As shown in Fig.  3, the HICO-
ET dataset exhibits a skewed distribution of annotations, leading to 
ighly biased predictions. To prevent overfitting on the relationship 
nnotations, we propose a hybrid coding scheme to address this prob-
em. That is, we partition interaction pairs into rare and non-rare cases. 

∗ Corresponding author.
E-mail address: tsungsha@usc.edu (T.-S. Yang).

For non-rare cases, we adopt the traditional one-hot coding. For rare 
cases, we group them into one super-class and then adopt binary codes 
and error correction codes (ECCs) to encode these rare cases. The 
repartitioning and data relabeling mitigate the imbalanced distribution 
in the original dataset. This is one of the significant contributions of 
this work.

Prevailing HOI detection solutions can be categorized into one-
stage and two-stage methods. One-stage methods (Lim et al., 2023; 
Chen and Yanai, 2023; Ma et al., 2023; Kim et al., 2021) are trained 
via end-to-end optimization of specific neural network architectures, 
where the objective function relates to the <human-interaction-object>
labels. The models fit the training dataset. Yet, labels in the dataset are 
not aligned perfectly with human understanding. An imperfect label is 
shown in Fig.  1, which indicates that the algorithms may be biased due 
to the imbalanced labels, making them difficult to interpret. Two-stage 
methods (Zhang et al., 2022, 2021; Hou et al., 2021) include object 
detection and relationship prediction steps, namely, (1) identifying 
where humans and objects are located and (2) determining the type of 
interaction between them. In the first stage, it conducts object detection 
using a pre-trained object detector and extracts various features from 
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Fig. 1. Illustration of challenges in the HOI problem with images from the HICO-DET 
dataset: images labeled as ‘no_interaction. The missing labels are for the background 
people and the detected objects.

input images. In the second stage, it leverages the first-stage outputs, 
such as object classes, bounding boxes, spatial relationships, etc., to 
predict the interaction type. Deep Learning (DL) models are widely ap-
plied in both stages. However, when deployed on edge applications, the 
cascaded model structures are computationally expensive. Typically, 
one-stage models outperform two-stage models in detection accuracy 
at the expense of larger model sizes and higher training/inference 
complexities. Fig.  4 visualizes the model complexity and inference cost. 
On the other hand, the decoupled modular design makes two-stage 
models more straightforward to understand.

Fig.  4 compares the model performance, model size, and compu-
tational complexity of several state-of-the-art (SOTA) HOI detectors. 
The model performance is represented by mAP (%) in the 𝑦-axis, 
the model size is represented by the number of model parameters in 
the 𝑥-axis, and the computational complexity is represented by infer-
ence floating-point operation (FLOP) numbers, respectively. This figure 
shows one-stage transformer-based models (QAHOI Chen and Yanai, 
2023 and ERNet Lim et al., 2023) and one-stage models based on inter-
action point prediction (IP-Net Wang et al., 2020 and PPDM Liao et al., 
2020). We also visualize two SOTA two-stage methods — UPT (Zhang 
et al., 2022) and SCG (Zhang et al., 2021).

One-stage models achieve astonishing detection performance. How-
ever, the end-to-end optimization algorithm conceals the reasoning 
processing in the high-dimensional numerical latent spaces. Though 
the attention heatmaps provide visual clues, the numerical vectors 
do not correspond to interpretable semantic representations. Besides, 
Zhu et al. (2023) pointed out that one-stage models could be biased 
in detection results under a skewed data distribution. On the other 
hand, two-stage methods have concrete intermediate results. Starting 
from the given conditions, the second-stage interaction prediction is an 
extension of the semantic understanding.

Aiming at interpretability and lower carbon footprints, we propose 
a new two-stage method called Efficient HOI (EHOI) in this work. As 
shown in Fig.  4, its mAP performance is worse than other two-stage 
models, UPT and SCG, yet its FLOP number is significantly lower. 
As reported in Section 4, the FLOP number of EHOI is 4500 times 
smaller than SCG and 15,800 times smaller than UPT per query. EHOI 
outperforms some one-stage models (IP-Net and PPDM) and underper-
forms others (QAHOI and ERNet) in mAP. However, it has tremendous 
2

advantages in the model size and FLOP numbers. Regarding carbon 
footprint (FLOP number) and memory (model size), EHOI offers an 
attractive AI/ML solution for mobile and edge devices. EHOI extends 
green learning (Kuo and Madni, 2023) to the HOI detection problem. 
The detector aims to provide a transparent decision-making process 
and maintain low power consumption regarding the number of floating 
point operations.

The contributions of this work are summarized below.

• EHOI offers comparable mAP performance with significantly 
lower (1/15,800x) inference complexity for the HICO-DET
dataset.

• EHOI is explainable. All of its modules can be interpreted as 
probability estimators. We formulate the learning process as the 
aggregation of conditional probabilities.

• The data distribution in the HOI dataset is analyzed. We shed light 
on individual modules with visual examples and explain modules’ 
decoupling statistically.

2. Related work

2.1. One-stage HOI detection

One-stage HOI detectors are inspired by one-stage object detec-
tors (Ren et al., 2015; Carion et al., 2020). Apart from the human and 
object bounding boxes, researchers define the interaction vectors from 
the center of the human bounding box to the corresponding object 
bounding box. Starting from the detector backbones, deep learning 
models can perform HOI detection with auxiliary interaction points or 
vectors.  Wang et al. (2020) cropped the intersection of the proposed 
human and object bounding boxes as the interaction region. The model 
can predict the internship label by exploiting the overlapped features. 
Liao et al. (2020) proposed a model optimized by the auxiliary output 
of predicting the interaction points. Leveraging the spatial information, 
the supervised loss from interaction points helps the model obtain 
better features and remove unlikely interactions.

With the thriving visual transformers (ViTs), transformer-based de-
tectors (Zhu et al., 2020; Jia et al., 2023) have been developed. The 
encoder–decoder structure conducts the detection by trainable query 
tensors. To merge the information from human and object bounding 
boxes,  Kim et al. (2021) developed a DETR (Carion et al., 2020) 
backbone and combined it with pairwise human/object queries for 
the interaction decoder. The merge human and object queries are 
interaction queries for further decoding.  Chen et al. (2021) introduced 
auxiliary interaction vector prediction to optimize the interaction de-
coder.  Tamura et al. (2021) used the Hungarian algorithm (Kuhn, 
1955) to calculate the loss of matched human/object pairs in the 
loss function. By exploiting overlapped patches between humans and 
objects, the auxiliary output can utilize human priors’ supervision by 
minimizing the loss function.

Besides the decoding process, utilizing the detectors in conjunc-
tion with pre-trained models significantly enhances performance.  Liao 
et al. (2022) combined the SOTA language and visual transformer, 
CLIP (Radford et al., 2021). Matching the textual embeddings and the 
interaction representations improves the relation decision significantly. 
Inspired by the deformable operations (Dai et al., 2017; Xia et al., 
2022),  Chen and Yanai (2023) replaced the ResNet backbone with 
deformable transformers. The backbone can focus on the objects not 
limited to the square grids. To enrich the presentations,  Lim et al. 
(2023) used the EfficientNet as the backbone to extract multi-scale 
features.  Yuan et al. (2023) consider the interaction as semantic 
labels by leveraging Large Language Models (LLMs).  Sun et al. (2024) 
introduce the human guidance of the language concept perception to 
further improve the detector performance.

Although one-stage models offer SOTA HOI detection performance, 
they have shortcomings. First, the training of one-stage models is highly 
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Fig. 2. Illustration of challenges in the HOI problem with images from the HICO-DET dataset: three images with the same verb, ‘wash,’ but humans behave differently. From left 
to right: ‘wash airplane’, ‘wash apple’, and ‘wash carrot’.
Fig. 3. The occurrence of <human-interaction-object> labels, where if the number of annotations exceeds 1000, it is clipped to 1000 for simplicity. Half of the relationship labels 
in the HICO-DET dataset have fewer than 200 annotations.
Fig. 4. Complexity comparison between the proposed EHOI and several other state-
of-the-art (SOTA) detectors for the HICO-DET dataset, where the 𝑥-axis is the model 
size in the log scale, the 𝑦-axis is mAP (%), and the bubble size is proportional to the 
inference FLOP numbers.

dependent on the dataset.  Zhu et al. (2023) pointed out that one-
stage models could be biased in detection results under a skewed 
data distribution. Second, it is challenging to interpret one-stage meth-
ods since the semantic information in images is hidden in numerous 
cascading latent spaces. Researchers indirectly analyzed the models 
using convolutional filter responses and attention matrices in Visual 
Transformers (ViTs). Third, they suffer from a large model size and high 
computational complexity.

2.2. Two-stage HOI detection

HOI is a human-centric classification task. The linkage between 
3

human and object representations is crucial. With the stagewise algo-
rithm, humans can understand the decision-making process clearly. In 
two-stage models, the first stage extracts various human and object rep-
resentations. In contrast, the second stage is a multi-pair (i.e., human–
object pairs) and multi-label (i.e., interaction labels) classification prob-
lem.

To understand the human representations, Gupta et al. (2019) used 
pose estimation models to obtain semantic information. The addi-
tion pose-estimation model provides a three-dimensional spatial un-
derstanding. By exploiting the human–object correlation,  Hou et al. 
(2020) constructed a model to yield human and object streams and han-
dled the relation between the two streams based on the co-occurrence 
of <human-relation-object> triplets. The triplets formation can be op-
timized by the composition learning (Kato et al., 2018). The merging 
process removes the impossible triplets and enhances the probabilities 
of possible triplets.

The human–object relationship can also be formulated as a graph, 
where human and object features can be viewed as the vertices in the 
graph. Hence, the interaction detection can be formulated as an edge 
production problem.  Gao et al. (2020) proposed a dual structure to 
model the relation. It combined the human-centric and object-centric 
graphs to predict the relation. The relationship is the weighted sum of 
the two sub-graphs.  Zhang et al. (2021) incorporated the coordinate 
information between objects in the graph convolution structure to 
capture spatial information within images. The spatial information can 
be defined as the vector between the human and object bounding 
boxes and their intersection. With the development of transformers, 
Zhang et al. (2022) adopted the FFN decoder structure for the pairwise 
relation classification. The decoder takes the features of the region of 
interest from the first stage as the inputs and performs the classification.
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2.3. Green learning

Kuo and Madni (2023) proposed a statistical-based learning frame-
work called Green Learning (GL) to address the increasing compu-
tational burdens of DL networks. The GL paradigm does not have 
neurons, neural networks, and end-to-end optimization via backprop-
agation. Instead, it adopts a feedforward and modular design in both 
training and inference based on data statistics. The whole processing 
pipeline is purely data-driven and transparent.

The green learning paradigm is composed of representation learning 
and decision learning. Representation learning is conducted by the 
transformations of the image and spectrum domains.  Kuo and Chen 
(2018) proposed the Subspace approximation with augmented kernels 
(Saak) Transform to construct the features from sampled patches. The 
transformation is a variant of the Principal Component Analysis (PCA). 
Saak transformation compacts the information from the sample patches 
and keeps the signs of responses without nonlinear functions.  Kuo et al. 
(2019) further proposed Subspace approximation with adjusted bias 
(Saab) Transform extending from the Saak transform. Saab transform 
divides the information into DC and AC terms and recenters the re-
sponses using the sample means. The Saab and Saak transformations are 
calculated from the eigenvalue decomposition, which purely depends 
on the sample statistics.

Decision learning is finding the correlations between representa-
tions and labels.  Yang et al. (2022) proposed a Discriminant Feature 
Test (DFT) to remove the redundant features from the raw features 
set. DFT computes the loss between a single dimension feature and the 
given labels. The more discriminant the feature, the more the loss func-
tion can be minimized. Aiming for explainability, GL methods adopt 
XGBoost classifiers (Chen and Guestrin, 2016) in the decision-making 
stage. The XGBoost classifier can lower the cross-entropy loss iteratively 
through a sequence of boosting trees to achieve loss optimization. In 
addition, the tree structure can demonstrate the importance of the input 
features and provide the statistical reasoning process from the features 
to the output labels.

The GL solution addresses environmental concerns by reducing 
FLOPs to relieve power consumption and carbon footprint. Our work 
follows this principle, as detailed in the next section.

3. EHOI method

3.1. System overview

The system diagram of the proposed EHOI method is shown in Fig. 
5, which is a two-stage method. The first stage is a pre-trained object 
detector, where we select DETR (Carion et al., 2020) as the object 
detector. It uses ResNet50 as the backbone and achieves good object 
detection performance trained by suitable object detection datasets. 
Since our main contributions lie in the second stage, we will emphasize 
the data processing pipeline of the second stage in this section. It 
consists of the following four tasks in cascade.

• Module A: Visual Features Construction
We utilize the Region of Interest (RoI) alignment and pool-
ing (Girshick, 2015) to generate human and object representa-
tions. It yields an input query pair that contains human and object 
features and their associated spatial information.

• Module B: Hybrid Interaction Coding
We propose a hybrid coding scheme to address the training 
samples’ imbalanced distribution of interaction pairs. That is, we 
partition interaction pairs into rare and non-rare cases. For non-
rare cases, we adopt the traditional one-hot coding. For rare cases, 
we group them into one super-class and then adopt binary codes 
with error correction codes (ECCs) to encode rare cases within the 
super-class.
4

• Module C: Discriminant Features Selection
The discriminant feature selection process is conducted based 
on the interaction codes. We identify a subset of discriminant 
features against every bit assignment of the interaction type.

• Module D: Conditional Decision on the Interaction Type
The final prediction is the aggregation of the probabilities outputs 
from each interaction bit.

The model in the second stage is efficient regarding the number 
of model parameters and Floating-point Operations (FLOP) numbers. 
Modules B–C are statistics-based, allowing interpretability. Further-
more, applying error correction codes (ECCs) to encode interaction 
labels is a novel contribution to the AI/ML literature. Its advantages 
are demonstrated in the experiments section.

3.2. Processing modules in the second stage

3.2.1. Module A: Visual features construction
Constructing a rich feature set for human and object representa-

tions is critical. Intuitively, the relative distances and other scenarios 
between the human and object locations in images are helpful for HOI 
detection. Utilizing the first-stage model, we can capture the features of 
corresponding regions by RoI pooling and alignment (Girshick, 2015). 
The human and object features can be obtained from aggregating differ-
ent layer feature maps in the detector. The relative spatial information 
includes the interaction vector and the relative sizes of human and 
object bounding boxes. The interaction vector is the difference between 
human- and object-bounding box centers. It can be represented in 
Euclidean or polar coordinate systems.

Furthermore, the background information can be extracted from 
the whole image features obtained from the backbone network. To 
summarize, the features under consideration comprise human RoI fea-
tures, object RoI features, relative spatial features, and whole image 
features. We also split human and object representations as individual 
queries and determine their spatial features accordingly. Some detailed 
descriptions are illustrated in Fig.  5. Yet, we should point out that 
these features are far from perfect since they lack precise semantic 
information, and discriminant features may be concealed in noisy 
training samples.

To deal with imbalanced labels, our model fits subsets of the inter-
action samples instead of the whole dataset. The classifiers are trained 
by subsets containing a common object for human queries. That is, the 
desired outputs of a classifier can be denoted as 
𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∣ ℎ𝑢𝑚𝑎𝑛) =

∑

𝑐∈{𝑂𝑏𝑗𝑒𝑐𝑡}
𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑐 ∣ ℎ𝑢𝑚𝑎𝑛), (1)

where 𝑐 denotes an object type and {𝑂𝑏𝑗𝑒𝑐𝑡} denotes the whole object 
set. The clustering process repartition the skewed data distribution 
into subset distribution. Under the constraint, 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑐, we can 
reduce the overall long-tail distribution to a few short-tail conditional 
distributions. Similarly, the classifier’s performance for object query 
can also be improved by conditional probabilities. We employ clus-
tering algorithms such as KMeans to create subsets and use them to 
train classifiers in each subset. We can assign a pseudo-label for each 
subset, and then the classifier can be formulated similarly. The ultimate 
classifier for object queries can be obtained by combining multiple 
subset classifiers in a weighted manner. We can aggregate the results 
of both human and object queries to make relation decisions in the 
inference stage.

3.2.2. Module B: Hybrid interaction coding
The foundation of modern machine learning models is to capture the 

distribution in the training dataset and generalize it to unseen samples. 
Finding a representation space that generalizes well between training 
and testing samples is essential. Representations could be highly di-
versified, and the labeled data may possess a long-tail distribution in 
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Fig. 5. The overall system diagram of the proposed EHOI. Its first stage uses a pre-trained object detector circled by blue dashed lines to obtain the object classes and locations. 
The object detector is kept frozen when training modules of the second stage. The main contributions of EHOI lie in the data processing pipeline in the second stage, which 
is circled by red dashed lines. It consists of four modules: (A) visual features construction, (B) interaction label coding, (C) discriminant features selection, and (D) conditional 
decision on the interaction type. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
real-world applications. Adopting the one-hot vector to represent the 
classes of interest in the context of AI/ML is typical. There are two 
problems with the one-hot representation. First, if the class number is 
large, the dimension of these one-hot vectors can be high. Second, the 
labeled data possess a long-tail distribution, as mentioned above. Take 
the HOI benchmark, HICO-DET, as an example. It has 600 interaction 
triplets. However, 138 have less than ten samples and are called rare 
cases. If we adopt the one-hot encoding scheme for all, we need 
600-dimensional vectors to represent them and have to train 600 one-
versue-the-rest binary classifiers. The classification performance of each 
rare case is expected to be poor due to high data imbalance since it is 
challenging for a classifier to learn from less than ten samples among 
more than 106 queries.

To handle this challenge, we merge several rare cases into a super-
class and adopt the traditional one-hot coding to encode non-rare 
cases plus this super-class. Then, we adopt the binary coding scheme 
to differentiate rare cases inside the super-class. Instead of training 
from less than ten positive samples, the super-class gathers several 
categorical labels, which prevents training a complicated classifier to fit 
on imperfect data distribution. To compare the difference between the 
one-hot and binary coding, we take a 4-class classification problem as 
an example. The four classes are {1000, 0100, 0010, 0001} in the one-hot 
encoding and as {00, 01, 10, 11} in the binary coding. Each bit represents 
a binary split. We can train four binary classifiers for the one-hot 
coding that handles the one-versus-the-rest classification problem. For 
the binary coding, we only train two binary classifiers. The first one 
separates {00, 01} from {10, 11} based on the first bit while the second 
one splits {00, 10} from {01, 11} based on the second bit. Each binary 
classifier can be viewed as a decoder. Nevertheless, each classifier 
may have mistakes, leading to wrong aggregated results. We use error 
correction codes (ECC) to enhance the robustness of a remedy. To 
follow the above example, we can assign three-bit codewords to them, 
i.e., {000, 011, 101, 110}. After adding the error correction bit, every 
codeword pair has a Hamming distance of 2 (i.e., have two different 
bits). Here, we use Hamming codes (Hamming, 1950) to improve the 
performance of straightforward binary codes and ensure that each 
representation differs from others with a Hamming distance of no less 
than 3 in EHOI.

The performance of four coding schemes is compared in Table  1 for 
the HICO-DET dataset. They are one-hot codes, binary codes, Hamming 
codes, and a hybrid coding scheme. The hybrid coding scheme adopts 
the one-hot coding for non-rare cases, the super-class of all rare cases, 
and the Hamming codes for rare cases. The table shows that the hybrid 
coding scheme achieves the best results, with a higher mAP value than 
one-hot codes. It is also worthwhile to point out that Hamming codes 
5

Table 1
Performance comparison between four coding schemes for interaction labels in mAP 
(%). Under the same architecture, the Hamming codes perform best for rare cases, 
while the one-hot codes offer the best performance for non-rare cases. The hybrid 
coding schemes yield the best overall performance.
 Methods Default Model size 
 Full Rare Non-Rare  
 EHOI (one-hot codes) 20.55 13.47 22.66 56.4M  
 EHOI (binary codes) 16.35 7.97 18.86 15.4M  
 EHOI (Hamming codes) 19.19 14.50 20.59 27.7M  
 EHOI (hybrid) 24.53 19.26 26.09 45.9M  

have a smaller model size, which helps reduce the model size of the 
hybrid scheme.

3.2.3. Module C: Discriminant features selection
Each bit representation in Hamming codes corresponds to a parti-

tion of labeled interactions into two sets. In other words, we relabel 
interactions of rare cases into two types denoted by 0 and 1, respec-
tively. If we do not change the features, this relabeling will become 
a subset of the original coding scheme. Hence, each bit assignment 
prompts the utilization of a feature selection module to identify the piv-
otal feature and exclude others. Such dimension reduction can prevent 
overfitting the estimator with the low-variance features.

We must select discriminant features for a given binary label to 
facilitate the classifier in the next module. This can be achieved by 
applying the Discriminant Feature Test (DFT) (Yang et al., 2022) to all 
input features individually. For a given 1D input feature, we place the 
feature value of each labeled training sample in a line segment bounded 
by the range of the maximum and minimum values, as shown in Fig. 
6. Then, we search for the optimal partition point on this line segment 
to minimize the loss function, which is defined as the weighted sum of 
binary cross-entropies of the left and right partitions. 
𝐻 = −

∑

𝑖∈{partition}
𝑦𝑖 log(𝑦𝑖), (2)

where 𝐻 denotes the binary entropy of the partitioned samples and 𝑦
represents the samples’ labels. 

𝐿 =
𝑁𝑙𝑒𝑓 𝑡𝐻𝑙𝑒𝑓 𝑡 +𝑁𝑟𝑖𝑔ℎ𝑡𝐻𝑟𝑖𝑔ℎ𝑡

𝑁𝑙𝑒𝑓 𝑡 +𝑁𝑟𝑖𝑔ℎ𝑡
, (3)

where 𝐿 denotes the loss of a partition point, and 𝑁𝑙𝑒𝑓 𝑡, 𝑁𝑟𝑖𝑔ℎ𝑡,𝐻𝑙𝑒𝑓 𝑡,
𝐻𝑟𝑖𝑔ℎ𝑡 denote the number of the samples and the binary cross-entropy in 
the left and right partition, respectively. A feature is more discriminant 
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Fig. 6. Visualization of DFT, where pink and orange dots represent the ‘‘0’’ and ‘‘1’’ binary labels, and the loss function is the weighted cross-entropy sum of samples in the left 
and right parts of the partition line.
if it has a lower loss value, reducing the number of miss-classified cases. 
Then, we can plot the loss value curve from the lowest to the highest 
and use the elbow point to select discriminant features from the whole 
feature set.

However, the detection dataset accompanies plenty of false detec-
tions. The imbalance distribution also occurs in the HOI detection. 
To enhance the correlation between features and positive labels, we 
change the binary cross-entropy to focal loss (Lin et al., 2020). 

𝐻𝑓 = −𝛼(1 − 𝑝)𝛾 log(𝑝), (4)

where 𝐻𝑓  denotes the focal loss in the partition, and 𝛼, 𝛾 ∈ 𝐑 are 
hyperparameters. The exponential parameter can emphasize the hard 
positive cases. Accordingly, the loss of the partition points can be 
denoted as the weighted sums of the two focal losses in the left and 
right partition. 

𝐿𝑓 =
𝑁𝑙𝑒𝑓 𝑡𝐻

𝑓
𝑙𝑒𝑓𝑡 +𝑁𝑟𝑖𝑔ℎ𝑡𝐻

𝑓
𝑟𝑖𝑔ℎ𝑡

𝑁𝑙𝑒𝑓 𝑡 +𝑁𝑟𝑖𝑔ℎ𝑡
. (5)

3.2.4. Module D: Conditional decision on the interaction type
We divide the desired decisions into sequential subproblems instead 

of training a complex classifier for the skewed data distribution. Each 
subproblem can be expressed clearly, step by step. First, we attempt 
to maximize the conditional probability of an interaction (or relation) 
conditioned on the human and object representations, which can be 
written as 
𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∣ ℎ𝑢𝑚𝑎𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡)

= 𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∣ ℎ𝑢𝑚𝑎𝑛) ∗
𝑃 (𝑜𝑏𝑗𝑒𝑐𝑡 ∣ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, ℎ𝑢𝑚𝑎𝑛)

𝑃 (𝑜𝑏𝑗𝑒𝑐𝑡 ∣ ℎ𝑢𝑚𝑎𝑛)

= 𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∣ 𝑜𝑏𝑗𝑒𝑐𝑡) ∗
𝑃 (ℎ𝑢𝑚𝑎𝑛 ∣ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡)

𝑃 (ℎ𝑢𝑚𝑎𝑛 ∣ 𝑜𝑏𝑗𝑒𝑐𝑡)
∼ 𝛼𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∣ ℎ𝑢𝑚𝑎𝑛) + 𝛽𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∣ 𝑜𝑏𝑗𝑒𝑐𝑡),

(6)

where 𝛼, 𝛽 are learnable parameters. The conditional probability esti-
mator can be decoupled into the linear combination of two simpler 
conditional estimators. As shown in Section 4.4.3, the human and 
object queries provide different types of interaction predictions. Then, 
the two conditional probabilities in the last equation can be further 
expressed as 
𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛|ℎ𝑢𝑚𝑎𝑛) =

∑

𝑐∈{𝑂𝑏𝑗𝑒𝑐𝑡}
𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑐|ℎ𝑢𝑚𝑎𝑛)

𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛|𝑜𝑏𝑗𝑒𝑐𝑡) =
∑

𝑑∈{𝐻𝑢𝑚𝑎𝑛}
𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, ℎ𝑢𝑚𝑎𝑛 = 𝑑|𝑜𝑏𝑗𝑒𝑐𝑡),

(7)

where 𝑐 and 𝑑 are class labels and {𝑂𝑏𝑗𝑒𝑐𝑡}, {𝐻𝑢𝑚𝑎𝑛} are the object 
sets and clustered human representations. Furthermore, the probability 
estimator can be decomposed into the piecewise conditional probability 
by using the clustering results in the previous stage. Suppose we use a 
bit stream, 𝐵 = (𝑏0, 𝑏1,… , 𝑏𝑛−1), to represent a relation. Then, we would 
like to maximize 𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑐|ℎ𝑢𝑚𝑎𝑛) and 𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, ℎ𝑢𝑚𝑎𝑛 =
𝑑|𝑜𝑏𝑗𝑒𝑐𝑡), which are called the human query and the object query, 
6

respectively. The conditional probability of human queries can be 
written as 
𝑃 (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑐|ℎ𝑢𝑚𝑎𝑛)

= 𝑃 (𝐵, 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑐|ℎ𝑢𝑚𝑎𝑛)

=
⋂

0≤𝑖<𝑛
𝑃 (𝑏𝑖, 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑐|ℎ𝑢𝑚𝑎𝑛).

(8)

The sequential decoding process is equivalent to aggregation of the 
label prediction, which is described in module D in Section 3.2.4. The 
conditional probability of object queries can be found in the same 
manner.

All the probability estimators in EHOI are XGBoost (Chen and 
Guestrin, 2016). XGBoost is a state-of-the-art classification algorithm 
and can demonstrate the feature importance by the tree node con-
struction, making the overall pipeline more transparent. For each bit 
classifier, we set the number of estimators and the depth of the tree to 
300 and 3, respectively. The aggregation of the bit stream prediction is 
conducted by Linear Discriminant Analysis (LDA).

4. Experiments

4.1. Datasets

V-COCO (Gupta and Malik, 2015) and HICO-DET (Chao et al., 
2018) are two commonly used HOI detection datasets. V-COCO is a 
subset of the MS-COCO dataset. It contains 2533 training images, 2867 
validation images, 4946 test images, and 24 actions. HICO-DET is larger 
than V-COCO. It comprises 37,633 training images, 9546 test images, 
117 actions, and 600 interactions for various action–object pairs. Its 
training set has 117,871 human–object pairs with annotated bounding 
boxes, while its testing set contains 33,405 such pairs. HICO-DET is a 
challenging dataset. The 600 labeled interactions can be divided into 
138 rare cases and 462 non-rare cases. Rare cases have less than ten 
samples in the training set. We use the mean Average Precision (mAP) 
as the evaluation metric, which is the mean of the average precision of 
all classes.

The HICO-DET dataset has two settings: Default and Known Object. 
In the Default setting, the algorithms must simultaneously label human 
and object bounding boxes, object type, and relationship. In the Known 
Object setting, the algorithms already have object information and only 
need to label human and object bounding boxes and their relationship.

In the V-COCO setting, there are two scenarios: S1 and S2. Scenario 
1 (S1) applies to test cases with missing role annotations. An agent role 
prediction is correct if the action is accurate, the overlap between the 
person boxes is >0.5, and the corresponding role is empty. Scenario 2 
(S2) also applies to test cases with missing role annotations. An agent 
role prediction is correct if the action is correct and the overlap be-
tween the person boxes is >0.5 (ignoring the corresponding role). This 
scenario is suitable for cases with roles outside the COCO categories.
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Table 2
Detection performance comparison of SOTA two-stage models in mAP (%) for the HICO-DET dataset under the default and known object settings and for the V-COCO dataset. The 
model sizes in the parameter number (M) are also compared, where the numbers are taken from Lim et al. (2023).
 Architecture Method Param(M)(↓) Backbone Default(↑) Known Object(↑) V-COCO(↑)

 Full Rare Non-Rare Full Rare Non-Rare 𝐴𝑃 𝑆1
𝑟𝑜𝑙𝑒 𝐴𝑃 𝑆2

𝑟𝑜𝑙𝑒 
Two-Stage Methods

 

Multi-Stream

No-Frill (Gupta et al., 2019) 72.3 ResNet152 17.18 12.17 18.08 – – – – –  
 PMFNet (Wan et al., 2019) 49.3 ResNet50 17.46 15.65 18.00 20.34 17.47 21.20 – –  
 ACP (Bansal et al., 2020) – ResNet101 21.96 16.43 23.62 – – – 53.2 –  
 PD-Net (Zhong et al., 2021) – ResNet152 22.37 17.61 23.79 26.86 21.70 28.44 52.0 –  
 VCL (Hou et al., 2020) – ResNet50 23.63 17.21 25.55 25.98 19.12 28.03 48.3 –  
 
Graph-Based

RPNN (Zhou and Chi, 2019) – ResNet-50 17.35 12.78 18.71 – – –  
 VSGNet (Ulutan et al., 2020) 84.9 ResNet-152 19.80 16.05 20.91 – – – 51.8 57.0  
 DRG (Gao et al., 2020) 46.1 ResNet50-FPN 21.66 19.66 22.25 – – – 51.0 –  
 SCG (Zhang et al., 2021) 53.9 ResNet50-FPN 29.26 24.61 30.65 32.87 27.89 34.35 54.2 60.9  
 Green Learning EHOI (Ours) 45.9 ResNet50-FPN 24.53 19.26 26.09 27.64 22.70 29.12 50.8 56.3  
Table 3
Detection performance comparison in mAP (%) between EHOI and three end-to-end 
trained one-stage methods (without finetuning object and action detectors individually) 
for the HICO-Det dataset, where the mAP results of HOTR, AS-Net, and QPIC are taken 
from Ma et al. (2023).
 Methods Default

 Full Rare Non-Rare 
 HOTR (Kim et al., 2021) 23.46 16.21 25.65  
 AS-Net (Chen et al., 2021) 24.40 22.39 25.01  
 QPIC (Tamura et al., 2021) 24.21 17.51 26.21  
 EHOI (ours) 24.53 19.26 26.09  

Table 4
The comparison of FLOP numbers per query between EHOI and two SOTA two-stage 
models.
 Two-stage models Default Parameters FLOPs  
 Full (per query)  
 SCG (Graph) 29.26 53.9M (1.2x) 54M (4,500x)  
 UPT (Transformer) 32.62 54.7M (1.2x) 190M (15,800x) 
 EHOI (Ours) 24.53 45.9M (1x) 12K (1x)  

4.2. Parameter settings

We used the pre-trained DETR (Carion et al., 2020) model as the 
first-stage object detector provided by SCG (Zhang et al., 2021) and 
UPT (Zhang et al., 2022). The human and object representations are 
the ROI pooling features from the CNN backbones. The feature selection 
processes are set to choose the top 1000 discriminant features from the 
human and object queries. The focal loss in the feature selection module 
is set to 𝛼 = 1.0 and 𝛾 = 2.0.

The conditional classifiers are based on the HICO-DET dataset in 
the second stage. The 600 interaction triples can be divided into 80 
objects and 117 relations. The possible relation classes range from 2 
to 16 by giving the object class. Hence, the Hamming codes can be 
represented by four binary bits with three error correlation bits. The 
bit classifiers are the XGBoost classifiers (Chen and Guestrin, 2016) 
with 700 estimators and a depth of 5. The aggregation processes are 
conducted by Linear Discriminant Analysis (LDA). The one-hot coding 
classifiers follow the same setting as the bit classifier.

4.3. Experimental results

4.3.1. Performance benchmarking against other two-stage models
We compare the performance of EHOI against other SOTA two-stage 

models, including multi-stream and graph-based models, in Table  2, 
where the top and the second performers are in bold and underlined, 
respectively. EHOI achieves the second-best mAP values in most cate-
gories for HICO-DET. Our EHOI model also has the smallest number of 
7

learnable parameters. It is important to note that EHOI relies solely on 
visual features and does not incorporate external word embeddings or 
pose estimation information during training.

DRG (Gao et al., 2020) uses extra language models in the train-
ing and prediction, which increases the computational burden in the 
training stage. Besides, graph-based HOI models need iterations of 
operations in graph convolutional networks, leading to a higher compu-
tation complexity, which will be discussed at the end of this subsection. 
SCG (Zhang et al., 2021) provides a similar mAP performance, but 
the classifier is a black box. The hidden layers are trained through 
end-to-end optimizations. However, our EHOI can give a statistical 
reasoning process for every intermediate classifier. The decision process 
is feedforward and can provide a sensible decision-making process for 
human understanding.

4.3.2. Performance benchmarking against one-stage models
Transformer models achieve impressive performance in various 

computer vision tasks at the expense of high computational complexi-
ties in training and inference. In the encoder–decoder-based detector, 
the model requires auxiliary queries for detection. There is no rule 
of thumb to determine the hyperparameters of the queries and save 
on computation requirements. Besides model efficiency, the training 
process is nontrivial for transformer-based one-stage HOI models.

Especially, HICO-DET is a dataset with a long-tailed distribution. 
The model will become biased if we enforce the model to fit the skewed 
label distribution. The number of rare cases with less than ten samples 
has more than 106 labeled pairs. The performance of one-stage models 
would drop dramatically if no finetuning were conducted on object 
detection and relation detection individually. Compared to the object 
labels, the interaction labels are incomplete  1. Hence, the imbalance 
labels will make the interaction detector the biased objected detector.

To verify the biased one-stage detectors, we compare the perfor-
mance of our EHOI method and those without delicate finetuning in 
Table  3. It was observed in Zhu et al. (2023) that imbalanced triples 
tend to decrease the object detection performance. In contrast, our two-
stage EHOI method does not need iterative finetuning on object and 
interaction detection. Thus, our architecture is more robust in terms 
of imbalanced triples. It can retain the performance of object detectors 
and plug-on relation detection features.

4.3.3. Comparison of computational complexity and carbon footprint
One of the critical aspects of our approach is the computational cost, 

with Green Learning explicitly focusing on energy consumption in the 
algorithms. Our claim of being ‘‘Green’’ is verified by comparing the 
computational cost of EHOI, UPT (Zhang et al., 2022), and SCG (Zhang 
et al., 2021) in Table  4. UPT is a transformer-based method, while SCG 
is a graph-based method. They are SOTA two-stage HOI methods (see 
Fig.  4 and Table  2).

Both of them demand a large number of iterated computations. The 
table shows that in the inference stage, the FLOP number per query of 
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Table 5
The ablation studies of the single modules. Feature Selection refers to Module C in Fig. 
5. Two-query is the feature construction process, which divides the features into two 
predictions. The hybrid coding scheme involves coding with binary codes and hamming 
error correction codes.
 Experiments Feature selection Two-query Coding Default

 Full Rare Non-Rare 
 Exp #1 11.83 9.78 12.44  
 Exp #2 ✓ 16.01 10.97 17.52  
 Exp #3 ✓ ✓ 20.55 13.47 22.66  
 EHOI (ours) ✓ ✓ ✓ 24.53 19.26 26.09  

EHOI is 1/4500 and 1/15,800 of that of SCG and UPT, respectively. De-
spite the possibility of accelerating tensor operations through parallel 
computing, the two deep learning models require much more electricity 
during the inference stage. EHOI is the most eco-friendly option in 
terms of carbon footprint.

4.4. Ablation studies

We conduct an ablation study to evaluate the individual module’s 
functionality in Section 4.4.1. Table  5 compares the performance of 
our model under different settings. In Section 4.4.2, we provide the 
detailed difference in detection results between one-hot and Hamming 
coding with error correction codes. Fig.  8 shows the advantage of the 
hybrid coding in the proposed HOI. The qualitative visual examples are 
illustrated in Section 4.4.3. Figs.  9 and 10 visualize the effect of the 
two-query structure in the proposed EHOI detector.

In this section, all the detection experiments and the visualizations 
are conducted in the HICO-DET dataset under the default setting. 
We follow the result format in Section 4 and use the mean Average 
Precision evaluation metric in the following subsections.

4.4.1. Modular design
Modular design is one of the highlights of our method. The feed-

forward components include feature selection, representation construc-
tion, and hybrid coding.

Two experiments are compared to study the feature selection effect: 
one using the raw features from the first-stage detector model and 
the other using the 1000 most discriminative features selected through 
feature selection (i.e., Exp #1 and 2 in Table  5). We observe that 
the performance improves when more discriminative and less noisy 
features are used as input.

Exp #2 and 3 demonstrate the impact of decoupling in conditional 
probability by linear combination proposed Eq.  (6). Without the de-
composition, the estimator takes all the selected features from the 
human and object RoI representations as the input and predicts the 
possible relationship among the 117 classes. In contrast, the two-query 
structure comprises two estimators taking human and object features, 
respectively.

Exp #3 and the proposed EHOI compare the conventional one-hot 
and the proposed hybrid coding schemes. The hybrid coding scheme 
can benefit all categories in the HICO-DET dataset. The detailed com-
parison between the coding scheme and the number of parameters is 
revealed in Table  1. The modularized experiments are the evidence 
for the decomposition process in Section 3.2.4. The subproblem for-
mulations can improve the estimators. In summary, the modules in the 
proposed EHOI are crucial to achieve the best results in HOI detection.

4.4.2. Effect of label coding
The relations between different coding schemes and detection per-

formance are shown in Table  1. We can further discuss precisions over 
the specific relation detection. We visualize the coding effects on the 
detection performance. One-hot and hamming coding can compensate 
for the performance in rare and non-rare cases. The results of one-hot 
8

Table 6
The precision, recall, and F1 scores for the picked rare cases (‘set umbrella’ and ‘lose 
umbrella’).
 Interaction Coding Scheme Precision Recall F1-score AP  
 set umbrella one-hot 0.03 0.20 0.04 0.077 
 Hamming 0.52 0.65 0.58 0.515 
 lose umbrella one-hot 0.02 0.56 0.04 0.051 
 Hamming 0.39 0.83 0.53 0.400 

coding, Hamming coding, and hybrid coding are illustrated in Fig.  7. 
As the proposed learning scheme, hybrid coding can provide the best 
detection performance. The two coding schemes can provide robustness 
and improve the detection performance by providing counterparts to 
each other.

In the detailed performance, one-hot coding and Hamming coding 
benefit different categories. Hamming coding can reach comparable 
performance when one-hot coding performs well. On the other hand, 
when the one-hot coding fails, the Hamming coding can provide the 
counterparts of the detection.

Zooming on the difference between two coding schemes and hy-
brid coding, Fig.  8 shows the performance increase along the relation 
categories. With the histogram, the performance does not result from 
using the two codes simultaneously. On the contrary, the relationship 
classes prefer a particular coding scheme. We can remove the extra bits 
using the performance boost as the criteria. Consequently, we can have 
the variable hybrid coding schemes for the corresponding relationship 
classes.

For the intuitive understanding of Hamming coding and one-hot 
coding impact on the detection, we picked the ‘set umbrella’ and ‘lose 
umbrella’ from the rare interactions for detailed analysis. As shown in 
Table  6, the Hamming coding could improve the precision of the rare 
case precisions. Due to the imbalanced data distribution, the recalls 
with one-hot coding are significantly lower than the Hamming coding. 
There is a great amount of missing detection of the ground truth. 
By relabeling the interaction with ECCs, the detection performance 
increases in the two rare cases.

4.4.3. Visual explaination
To verify the decoupling in probability in Eq.  (6), we visualize 

the outputs from the human and object queries. In the example, we 
use the object type umbrella and the corresponding relations {carry,
hold, lose, no_interaction, open, repair, set, stand_under}. From human 
understanding, {carry, hold, open, stand_under} may relate to the human 
representations. On the other hand, {lose, repair, set} may relate to the 
object representations.

Fig.  9 demonstrates the prediction from the human and object 
queries. The first row is the prediction from the human query, and 
the second is the prediction from the object query. The human query 
may confuse the predictions in the lose and set relations. In contrast, 
the object query can precisely capture the object status and correctly 
predict the lose and set.

Aiming to further understand the classifiers’ behaviors, we give an 
example in Fig.  10. The human representations are similar in Figs.  9 and 
10, which can be revealed in the ground truth labels hold and stand_un-
der. However, human queries cannot detect the relations between the
set and lose. The object queries can detect the two relations. In the 
object-query classifiers, the set and lose owe the highest probability 
scores in the results, leading to high confidence in the predictions.

The decision process can be treated as human understanding. We 
can take the triple <human, relation, object> as two pairs: <human, 
relation> and <relation, object>. The human query is based on the 
information that describes the <human, relation> pairs. In contrast, the 
object query captures the visual features of the objects and expresses 
the <relation, object> pairs. The final outputs of the triple can be 
calculated as the weighted sum of the two predictors using  Eq.  (6).
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Fig. 7. The APs respect to different coding schemes. The one-hot coding in the interaction labels is represented by the blue histogram in the AP performance, while the green 
histogram depicts the Hamming coding performance. Additionally, the hybrid coding, which is proposed in our methodology, is illustrated by the gray histogram.
Fig. 8. The boost between the hybrid and on-hot coding and Hamming coding scheme. The difference between hybrid coding and one-hot coding is shown in blue. Similarly, the 
difference between hybrid and Hamming coding is shown in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
Fig. 9. The classifier in the human query cannot find the critical representations in the umbrella region of interest. Fortunately, the object query can provide the counterparts of 
the prediction and make the outputs robust. Here, the ‘set umbrella’ is a rare interaction in the dataset. The proposed EHOI can successfully detect the three ground truth relations.
5. Conclusion and future work

An efficient HOI detector, called EHOI, was proposed in this work. It 
is both mathematically transparent and computationally efficient while 
offering competitive detection performance. The use of ECC for the 
coding of rare interaction types helps improve the robustness of EHOI. 
The divide-and-conquer feedforward design can reduce the complexity 
9

of the modules. Meanwhile, the intermediate results can provide in-
terpretable insights into the decision-making processes, enhancing user 
comprehension and reducing the potential for misuse.

Nevertheless, the modular design can yield only partial results, 
limiting the ability to fix the error when the intermediate results go 
wrong. In the future, we can extend the green learning scheme to 
image understanding applications and create human-sensible learning 
algorithms. We can build up the controllable module to complete 
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Fig. 10. The human representation is similar to Fig.  9. The human query provides a probability distribution similar to the previous example. In contrast, the object query provides 
the lose label. Here, the ‘lose umbrella’ is a rare interaction in the dataset. The proposed EHOI can successfully detect the three ground truth relations.
the whole system and provide better performance by aligning human 
intelligence with machine learning algorithms.
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