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ABSTRACT

A point cloud quality assessment method, called the Blind Point
Cloud Quality Assessment (BPQA), is proposed to evaluate the per-
ceptual quality of point clouds compressed by various point cloud
codecs. BPQA consists of three modules. First, it selects points
of various salience degrees based on the color information. Sec-
ond, it projects the local neighborhood of selected points along one
of the three orthogonal axes to yield a five-channel map (namely,
RGB, depth, and pairwise-point-distance-mean channels). Third, it
extracts features using the channel-wise Saab transform (c/w Saab)
and the relevant feature test (RFT) and trains an XGBoost regres-
sor to predict the Mean Opinion Score (MOS). BPQA offers com-
petitive performance in no-reference quality assessment tasks of the
ICIP 2023 PCVQA Chanllenge.

Index Terms— Point cloud, point cloud quality assessment,
non-referenced quality assessment

1. INTRODUCTION

Point clouds are widely used in various fields such as computer-
aided design, virtual reality, and autonomous driving. These applica-
tions require effective quality assessment metrics. The study of no-
reference point cloud quality assessment has received considerable
attention in recent years. Quite a few methods have been proposed to
model the characteristics of the Human Visual System (HVS). How-
ever, most of them are not specifically designed for compression dis-
tortion evaluation. The emergence of new point cloud codecs poses a
challenge in developing effective quality assessment metrics of high
accuracy and low complexity.

In this work, we study the problem of compression distortion as-
sessment caused by point cloud codecs, and propose a no-reference
point cloud quality assessment method. It is named the Blind Point
Cloud Quality Assessment (BPQA) method. BPQA consists of
three modules: 1) salient points selection, 2) 3D-to-2D projection
to generate multi-channel maps, and 3) map representation learn-
ing based on the channel-wise Saab (c/w Saab) transform, feature
extraction via the relevant feature test (RFT) [1], and XGBoost re-
gression for quality scores, respectively. Experimental results show
that BPQA offers competitive performance in two tasks of the ICIP
2023 PCVQA Challenge.

The authors acknowledge the gift support from the Tencent Media Lab
as well as the Center for Advanced Research Computing (CARC) at the Uni-
versity of Southern California for providing computing resources that have
contributed to the research results reported within this publication. URL:
https://carc.usc.edu.

2. REVIEW OF PREVIOUS WORK

The point cloud quality assessment tasks can be categorized into the
full-reference and no-reference two types depending on whether the
original point cloud is available as a reference. In the absence of a
reference, powerful features and effective learning models are crit-
ical. The characteristics of the human visual system (HVS) have
been leveraged to derive good features and models. For example,
the visual masking effect on point cloud quality assessment has been
investigated in [2, 3, 4]. The distortions perceived by HVS is dif-
ferent from the physical characteristics in local regions. Torlig et al.
[5] showed the similarity between the 3D-to-2D projection and the
HVS functionality.

Based on the HVS study, quite a few learning-based quality met-
rics have been developed. For instance, Chetouani et al. [6] utilized
a neural network to learn low-level features for quality scoring. Tao
et al. [7] proposed a point cloud projection and multiscale feature
fusion network. Liu et al. [8] proposed a PCQA network compris-
ing a feature extraction/fusion module, a distortion type identifica-
tion module, and a quality prediction module sequentially. Zhang
et al. [9] employed 3D natural scene statistics and entropy as fea-
tures and used an SVM model to predict quality scores. Damme et
al. [10] used KNN clustering and prediction techniques combined
with pixel-based features. Recently, a sparse CNN-based method
was proposed in [11] claiming a better performance over some FR
metrics.

Among existing point cloud quality assessment work, only
a few have been tailored to compression distortion evaluation.
With the growing interest in point cloud coding, standardized
point cloud codecs such as V-PCC and G-PCC [12, 13, 14, 15]
and non-standardized ones like Geo-CNN [16, 17], Sparse PCGC
[18, 19, 20], and Green PCGC [21], have been developed in recent
years. Because of the emerging trend, the assessment of point cloud
compression distortion has become increasingly important. Addi-
tionally, the quality assessment model should have low complexity
so that the metrics can be integrated inside the encoder or decoder
for performance optimization in mobile/edge devices. This presents
a great challenge on deep-learning-based models. In this work, we
leverage the HVS characteristics and the green learning paradigm
[22] to develop a blind point cloud quality metric.

3. PROPOSED BPQA METHOD

3.1. System Overview

The proposed BPQA method consists of three modules as shown
in Fig. 1: 1) saliency-based point sampling, 2) multi-channel map
generation, and 3) representation learning, feature extraction and re-
gression. In the first module, the color saliency of each point in a
point cloud scan is computed. Based on their saliency values, we
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Fig. 1. An overview of the proposed BPQA method. The saliency-based point sampling is presented in Module 1. The 3D-to-2D patch
projection yields multi-channel maps in Module 2. Representation learning, feature extraction and regression is presented in Module 3.

classify points into seven bins. We sample points uniformly from
the 7 bins to get a set of points for further processing. In the second
module, a local patch is constructed based on the neighborhood of
each selected point from Module 1. Then, a 3D-to-2D projection
along one of the x−, y−, z− axes is conducted for the patch, which
yields a 5-channel map, including the RGB values, the depth value
and the pairwise-point-distance-mean value. In the third module, a
new representation is obtained by a 2-hop cw-Saab[23, 24], powerful
features are extracted based on RFT [1], and an XGBoost regressor
is trained to predict the Mean Opinion Score (MOS) for each patch.
Finally, the MOS of all patches are fused to yield the final MOS
score of the whole point cloud. These three modules are elaborated
in Sec. 3.2, Sec. 3.3, and Sec. 3.4, respectively.

3.2. Module 1: Saliency-based Point Sampling

To lower the computational complexity, we sample representative
points from the full point cloud scan. An input point cloud is first
voxelized and evenly downsampled. A voxel point takes the average
value of points in a neighborhood of dimension s × s × s. In this
downsampled voxel representation, representative voxel points are
further sampled based on their color saliency. This idea is borrowed
from the saliency calculation method proposed in [25]. It evaluates
the deviation of the attribute value of a target point from the averaged
attribute value of its neighborhood. It yields a color saliency score
that is independent of the point cloud geometry. However, the use of
high-saliency points alone is not sufficient. Instead, a combination
of points of different saliency values gives better results. Here, we
develop a bin-wise sampling strategy based on saliency scores.

We partition saliency scores into 7 bins with the following steps:
1) sorting all voxel points in the training set with their saliency
scores; 2) evenly dividing sorted saliency scores into 7 bins, 3)
randomly sampling the same number of voxel points in each bin.
To ensure the quality and representative capability of sampled voxel
points, two more sampling criteria are imposed. First, if the number

of neighboring points of the sampled one is less than a threshold,
this point is discarded. Second, if a sampled point is too close to
another one (e.g. the Euclidean distance is smaller than a threshold),
the second sample is also excluded.

Assisted by the two criteria, we sample n voxel points from each
bin, and a total of 7n representative voxel points are sampled for
the raw point cloud scan. The saliency scores of voxel points in a
point cloud scan typically follow an exponential-like distribution as
shown in Figure 1. The great majority of points have low saliency
scores. Given a budget of the total sampling number, voxel points
of higher saliency have a higher likelihood of being selected under
bin-wise resampling. This sampling strategy is better than a uniform
sampling on points of the whole point cloud as presented in Sec. 4.

3.3. Module 2: Multi-channel Map Generation

Voxel points and points of the raw point cloud, called raw points,
have different scales. A voxel point can be empty or it can contain
multiple raw points. For this reason, we need to find a correspond-
ing raw point with respect to each sampled voxel point. Suppose
the coordinates of a sampled voxel point are (x, y, z). We find a
point in the raw point cloud that has the nearest Euclidean distance
to (x, y, z). Its coordinates are denoted by (x̃, ỹ, z̃). Then, we use
(x̃, ỹ, z̃) as the center and get all raw points with a bounding cube of
dimension d × d × d. We perform an orthogonal projection inside
the cube along x, y, and z-axes, respectively, and choose the one
that has the maximum projection area. To measure the projection
area, we first discretize the 2D projected plane with a uniform grid
consisting of l × l = l2 blocks. Then, the projection area is defined
to be the number of non-empty blocks. This idea was first proposed
in [21].

The projected 2D plane produces a 2D grid of size l × l. Then,
we define a five-channel map on this grid. The five channels are three
color channels, one depth channel, and one pairwise-point-distance-
mean channel as shown in Figure 1. The five-channel map is used
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to represent the local color and the geometry information of a point
cloud. When a block has only one projected point, the RGB value
of the block is directly copied from that point. If a block has two
or more projected points, the point closest to the projection plane
is selected, where the projection plane is the plane passing through
the cube centroid with its normal vector parallel to the projection di-
rection. If a block has no projected points, it is marked as null. A
similar operation is performed to yield the depth channel. Finally, a
pairwise-point-distance-mean map is generated for all points inside
the same 3D cube. To remove an isolated null value, we conduct the
bilinear interpolation on each channel based on its non-null neigh-
bors as a post-processing step to yield a smooth map.

3.4. Module 3: Representation Learning, Feature Extraction
and Regression

The third module is a data-driven learning process. We adopt the
green learning paradigm [22] due to its low complexity and small
model size advantages. It contains three steps: unsupervised repre-
sentation learning, semi-supervised feature learning, and supervised
machine learning. They are elaborated below.

a) Unsupervised representation learning. It consists of two cas-
caded stages called two hops, where Hop 1 and Hop 2 are designed
to capture both local and global representations, respectively, as de-
picted in Figure 1 The channel-wise Saab transform (cw-Saab) [24]
is performed in each hop. In Hop 1, the input multi-channel map is
partitioned into non-overlapping blocks of size 4×4, where the Saab
transform is performed to obtain the Saab coefficients. Each chan-
nel is processed separately, and the Saab coefficients are fed into a
data aggregation layer that takes the absolute value and then uses the
maximum pooling to reduce the feature dimension. Then, a similar
process is repeated in Hop 2 to enlarge the receptive field. Apart
from the Saab coefficients, we use other operations to generate two
additional sets of representations. First, we compute the maximum,
mean and standard deviation of the same coefficient across the spa-
tial domain. They provide global presentations of the whole point
cloud. Second, we compute the mean value of the point-wise short-
est Euclidean distances in each 3D cube. Saab coefficients of five
channels in Hop 1 and Hop 2 and these two additional sets are con-
catenated to form a long representation vector. Note that no labels
are needed in this step.

b) Semi-supervised feature learning. We use the relevant feature
test (RFT) [1] to evaluate the discriminating power of each feature.
Basically, it partitions each representation, which is a scalar, into
two regions at a set of discrete points that are chosen from the inter-
val between the maximum and the minimum of the representation.
For each partition, we calculate the mean value of samples in each
region and use it to compute the mean-squared error (MSE) asso-
ciated with each region. Then, we choose the partition point that
minimizes the weighted MSE value. The corresponding MSE value
is called the RFT cost of that representation. If a representation has a
smaller RFT cost, it has a better approximation capability to reduce
the regression error. Then, we sort all representations based on their
RFT loss values from the smallest to the largest as shown in Figure
2, where the x-axis indicates the sorted representation index and the
y-axis is the RFT loss value. Each curve indicates the RFT behavior
of one channel. We see that all curves have a distinct elbow point.
It means that representation before the elbow should be selected as
features. This process can be applied to a subset of training samples.
Thus, it is called the semi-supervised feature extraction.

c) Supervised decision learning. The Mean Opinion Score
(MOS) prediction of each cube is implemented by the XGBoost re-
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Fig. 2. The RFT curves of sorted representations for five chan-
nels. The majority of quality-aware representations come from RGB
channels. The first few representations from the depth map and the
distance map also contribute to the quality score prediction.

gressor [26]. It maps a feature vector to a MOS value. If we sample
a total of k cubes from a point cloud scan, we obtain k MOS values
per object. We conduct a simple average of these k values to get the
predicted MOS value for the point cloud scan. We need all training
samples and their labels in this step to get better performance. Thus,
it is fully supervised.

4. EXPERIMENTS

Experimental Setup. The down-sampling voxel size d × d × d is
set to 8 × 8 × 8. The color saliency score is computed in a KNN
neighborhood with K = 64. We select n = 40 representative points
in each bin. The 3D cube and the 2D projected maps are set to
32× 32× 32 and 32× 32, respectively. In Module 3, the Saab ker-
nel size is 4×4 in both hops, with a maximum-pooling window size
of 2 × 2. For the XGBoost, the tree number is 1500, and the depth
is 5. We use the training set from the Broad Quality Assessment of
Static Point Clouds (BASICS) [27] provided by the ICIP PCVQA
Challenge organizer. It contains 898 lossy-coded point cloud ob-
jects reconstructed from 45 static point cloud objects encoded by
four point cloud codecs under different bitrates.

Performance Analysis. The performance is evaluated by the
Pearson Linear Correlation Coefficient (PLCC), the Spearman Rank
Order Correlation Coefficient (SROCC), Difference/Similar Anal-
ysis quantified by Area Under the Curve (D/S AUC), and Bet-
ter/Worse Analysis quantified by Correct Classification percentage
(B/W CC)[28]. PLCC is A measurement for the linear correlation
between predicted scores and subjective quality scores defined as

PLCC = 1−
∑

i(pi − pm)(p̂i − p̂m)√∑
i(pi − pm)2

√∑
i(p̂i − p̂m)2

, (1)

where, pi and p̂i refer to the predicted score and the subjective qual-
ity score, respectively, while pm and p̂m denote the mean of the pre-
dicted score and the subjective quality score, respectively. SROCC
is adopted to measure the monotonicity between predicted and sub-
jective quality scores, which are defined as

SROCC = 1−
6
∑L

i=1(mi − ni)
2

L(L2 − 1)
, (2)
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Track 2
Team Name SROCC PLCC D/S AUC B/W CC Runtime Final Points (20 Max) Final Ranking

ZZhang - SJTU MMLAB 0.8806 0.9076 0.8481 0.9626 16.10 18 1
QZhou - Q&A 0.7933 0.8038 0.7878 0.9079 27.7 12 2

RWatanabe - KDDIUSCJoint 0.7595 0.7950 0.7317 0.8911 11.53 11 3
OMessai - Ecole des Mines 0.5473 0.5883 0.6554 0.7764 5.53 8 4

YZhang - SlowHand 0.3901 0.5136 0.6232 0.7009 16.37 1 5

Track 4
Team Name SROCC PLCC D/S AUC B/W CC Runtime Final Points (20 Max) Final Ranking

ZZhang - SJTU MMLAB 0.6352 0.6103 0.6782 0.9141 16.10 18 1
QZhou - Q&A 0.5526 0.4064 0.625 0.8691 27.70 12 2

RWatanabe - KDDIUSCJoint 0.444 0.4167 0.579 0.7959 11.53 12 2
OMessai - Ecole des Mines 0.2761 0.1458 0.4939 0.6744 5.53 8 4

YZhang - SlowHand 0.0958 0.1065 0.4951 0.5569 16.37 2 5

Table 1. The scores on Tracks 2 and 4 in the challenge, where our method is given in boldface.

Methods PLCC SROCC
Random sampling 0.875 0.814
Lowest saliency selection 0.879 0.825
Highest saliency selection 0.864 0.789
Saliency-based sampling 0.885 0.837

Table 2. Comparison of different representative point selection
schemes in Module 1.

Methods PLCC SROCC
RGB 0.860 0.789
RGB+depth 0.873 0.805
RGB+pairwise distance
mean

0.874 0.814

RGB+depth+pairwise dis-
tance mean

0.885 0.837

Table 3. Comparison of different choices of multi-channel maps in
Module 2.

where mi represents the rank of pi in the predicted scores, ni rep-
resents the rank of p̂i in the subjective quality score and L is the
number of images.

In the ICIP PCVQA Challenge, our method was benchmarked
with other submissions in Track 2 (no-reference, broad-range qual-
ity estimation) and Track 4 (no-reference, high-quality range). Our
method gives a competitive performance in both. For Track 2, our
model has the second-highest scores in PLCC, SROCC, D/S AUC,
and B/W CC. In Track 4, it achieves the second-highest scores in
SROCC, D/S AUC, and B/W CC, and third in PLCC. The complex-
ity of our method is dominated by saliency score computation. If we
can replace the saliency computation with some other faster ones,
the runtime of our model can be much reduced. Furthermore, our
model was developed purely on the CPU platform. No optimization
on the GPU platform is implemented yet.

Discussion on Failure Cases. Several cases with significant
over-estimated point cloud quality scores are circled in Figure 3.
They are samples coming from a deep-learning-based codec called
GEO-CNN at lower bitrates. The codec tends to distort high-saliency
regions by twisting and breaking textures apart. For example, the
strings and bow of the “violin” object in Figure 1 are distorted into
segmented pieces. Local cube-based metrics cannot estimate the
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Fig. 3. Predicted MOS vs. ground truth MOS. Data points in the red
circle indicate the failure cases, where our model overestimates the
quality of some GEO-CNN-compressed [16] point clouds.

distortion well without proper global information. We will find
better solutions for these failure cases in our future work.

Ablation Study. To assess the effectiveness of different compo-
nents of our method, we conduct ablation studies on the validation
set. The sampling scheme in Module 1 is evaluated by compar-
ing four schemes: the proposed saliency-based sampling, random
sampling, using 7n points with the highest and the lowest saliency
scores. Table 2 shows that the saliency-based sampling scheme of-
fers the highest PLCC and SROCC scores. The contribution of mul-
tiple channels for map representation is also evaluated in Module 2.
Different channel combinations are compared in Table 3. We see the
importance of depth and pairwise-point-distance-mean maps.

5. CONCLUSION

A no-reference point cloud quality assessment method, called Blind
Point Cloud Quality Assessment (BPQA), was proposed in this
work. The method achieves competitive results in the ICIP PCVQA
Challenge. In the future work, we would like to improve its pre-
diction performance, computational complexity, and model size
furthermore.
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