
GHOI: A Green Human-Object-Interaction Detector
1st Tsung-Shan Yang

Department of Electrical Engineering
University of Southern California

Los Angeles, USA
tsungsha@usc.edu

2nd Yun-Cheng Wang
Department of Electrical Engineering

University of Southern California
Los Angeles, USA
yunchenw@usc.edu

3rd Chengwei Wei
Department of Electrical Engineering

University of Southern California
Los Angeles, USA
chengwei@usc.edu

4th C.-C. Jay Kuo
Department of Electrical Engineering

University of Southern California
Los Angeles, USA

jckuo@usc.edu

Abstract—Human-Object Interaction (HOI) detection is a
fundamental task in image understanding. All recent high-
performance HOI methods are based on deep learning (DL)
models, which are computationally expensive with an opaque
inference process. A green HOI (GHOI) detector is proposed
in this work to strike a good balance between detection per-
formance, inference complexity (i.e., low carbon footprints),
and mathematical transparency. GHOI is a two-stage method.
In the first stage, it conducts object detection and extracts
various features from the input images as intermediate outputs.
In the second stage, it uses the first-stage outputs to predict
the interaction type using the XGBoost classifier. One novel
contribution is the application of error correction codes (ECCs)
to encode rare interaction cases. This reduces the model size
and the complexity of the XGBoost classifier in the second stage.
Experimental results demonstrate the advantages of ECC-coded
interaction labels and the nice balance of detection performance
and complexity of the proposed GHOI method.

Index Terms—Human-Object Interaction (HOI) Detection,
Error Correction Code, Green Learning, Image Understanding.

I. INTRODUCTION

Human-Object Interaction (HOI) detection is an impor-
tant task for image understanding [1], [2]. The labels in
HOI datasets are triplets in the form of <Human-Interaction-
Object>. HOI detection focuses on human-centric relations and
can be applied to human-related applications such as action
detection. HOI detection can be challenging, as illustrated in
Fig.1. The examples are taken from a popular HOI detec-
tion dataset, HICO-DET [1]. Images may contain the label
‘no_interaction’, but not every no_interaction human-object
pair is labeled. Furthermore, some images may share the same
verb in different scenarios, known as verb polysemy [3].

HOI methods can be categorized into two main categories:
one-stage and two-stage models. One-stage models are ob-
tained via end-to-end optimization of certain neural network
architectures, where all ground truth bounding boxes and
labels are used to define a loss function in the training stage.
Although they can achieve better prediction performance,
they are difficult to interpret. Two-stage methods decompose
the processing procedure into two decoupled modules: 1)
identifying where humans and objects are located and 2)

Fig. 1. Illustration of challenges in the HOI problem with images from
the HICO-DET dataset: (a) images labeled as ‘no_interaction,’ (b)-(d) three
images with the same verb, ‘wash,’ but humans behave differently.

determining the type of interaction between them. In the first
stage, it conducts object detection using a pre-trained object
detector and extracts various features from input images. In the
second stage, it leverages the first-stage outputs, such as object
classes, bounding boxes, spatial relationships, etc., to predict
the interaction type. Deep learning (DL) models are often
employed in both stages, leading to a high model complexity.
Typically, one-stage models outperform two-stage models in
detection accuracy at the expense of larger model sizes and
higher training/inference complexities. On the other hand, two-
stage models are easier to understand due to their modular
design.

Fig. 2 shows the comparison between different HOI detec-
tors in terms of model performance, model sizes, and carbon
footprint. Specifically, the model performance is expressed
in mAP (%) in the y-axis, model sizes are expressed as
the number of model parameters in the x-axis, and carbon
footprint is reflected by inference floating-point operation
(FLOP) numbers, respectively. This figure includes one-stage
transformer-based models (QAHOI [4] and ERNet [5]) and
one-stage models based on interaction point prediction (IP-
Net [6] and PPDM [7]). We also list two SOTA two-stage
methods, namely, UPT [8] and SCG [9]. Aiming at inter-



Fig. 2. Complexity comparison between the proposed GHOI and several other
state-of-the-art (SOTA) detectors for the HICO-DET dataset, where the x-axis
is the model size in the log scale, the y-axis is mAP (%), and the bubble size
is proportional to the inference FLOP numbers.

pretability and lower carbon footprints, we propose a new
two-stage method called Green HOI (GHOI) in this paper.
As shown in Fig. 2, its mAP performance is worse than other
two-stage models, UPT and SCG, yet its FLOP number is
significantly lower. As reported in Sec. IV, the FLOP number
of GHOI is 4,500 times smaller than SCG and 15,800 times
smaller than UPT per query, respectively. GHOI outperforms
two one-stage models (IP-Net and PPDM) and underperforms
another two one-stage models (QAHOI and ERNet) in mAP.
However, it has tremendous advantages in the model size and
FLOP numbers. In terms of carbon footprint (FLOP number)
and memory (model size), GHOI offers an attractive AI/ML
solution for mobile and edge devices.

One main challenge in HOI detection is to handle the
imbalanced distribution of interaction pairs in the training
samples. We propose a hybrid coding scheme to address this
problem. That is, we partition interaction pairs into rare and
non-rare cases. For non-rare cases, we adopt the traditional
one-hot coding. For rare cases, we group them into one super-
class, and then adopt binary error correction codes (ECCs) to
encode these rare cases. This is one of the major contributions
of this work.

II. RELATED WORK

A. One-stage HOI Detection

Wang et al. [6] and Liao et al. [7] proposed the use of
interaction point prediction to improve the Average Precision
(AP) performance. Besides object detection, they exploited
the overlapping features between human and object bounding
boxes. The supervised loss from interaction points helps the
model obtain better features and remove unlikely interactions.
With the thriving visual transformers (ViTs), transformer-
based models have been investigated. Kim et al. [10] de-
veloped a DETR [11] backbone and combined it with pair-
wise human/object queries for the interaction decoder. The
interaction Feed-Forward Networks (FFN) were trained by

the corresponding relation labels. Chen et al. [12] introduced
auxiliary interaction vector prediction for interaction FFNs
optimization. Tamura et al. [13] used the Hungarian algo-
rithm [14] to calculate the loss of matched human/object
pairs in the loss function. Liao et al. [15] combined the
SOTA language and visual transformer, CLIP [16], whose
comprehensible embeddings improve the relation decision sig-
nificantly. Chen et al. [4] replaced the ResNet backbone with
deformable transformers. Lim et al. [5] used the EfficientNet
as the backbone to extract multi-scale features.

Although one-stage models offer SOTA HOI detection per-
formance, they do have some shortcomings. First, the training
of one-stage models is highly dependent on the dataset. Zhu et
al. [17] pointed out that one-stage models could be biased in
detection results under a skewed data distribution. Second, it is
challenging to interpret one-stage methods since the semantic
information in images is hidden in numerous cascading latent
spaces. Researchers analyzed the models using convolutional
filter responses and attention matrices in Visual Transformers
(ViTs) indirectly. Third, they suffer from a large model size
and extremely high computational complexity.

B. Two-stage HOI Detection

HOI is a human-centric classification task. The linkage
between human and object representations is crucial. In two-
stage models, the first stage extracts various human and object
representations, while the second stage is a multi-pair (i.e.,
human-object pairs) and multi-label (i.e., interaction labels)
classification problem. Gupta et al. [2] used pose estimation
models to obtain semantic information. By exploiting the
human-object correlation, Hou et al. [18] constructed a model
to yield human and object streams and handled the relation be-
tween the two streams based on the co-occurrence of <human-
relation-object> triplets. The human-object relationship can
also be formulated as a graph, where human and object fea-
tures can be viewed as the vertices in the graph. Gao et al. [19]
proposed a dual structure to model the relation. It combined
the human-centric and object-centric graphs to predict the
relation. Zhang et al. [9] exploited the spatial information
between objects in the graph convolution structure. With the
development of transformers, Zhang et al. [8] adopted the FFN
decoder structure for the pairwise relation classification.

To address the increasing computational burdens of DL
networks, Kuo et al. [20] proposed a statistical-based learning
framework called Green Learning (GL). The GL paradigm
does not have neurons, neural networks, and end-to-end opti-
mization via backpropagation. Instead, it adopts a feedforward
and modular design in both training and inference based on
data statistics. The whole processing pipeline is purely data-
driven and transparent. The GL solution focuses on reducing
FLOPs to relieve power consumption and carbon footprint,
addressing environmental concerns. Our work follows this
principle, as detailed in the next section.



III. GHOI METHOD

A. System Overview

The system diagram of the proposed GHOI method is shown
in Fig. 3, which is a two-stage method. The first stage is a
pre-trained object detector, where we select DETR [11] as the
object detector. It uses ResNet50 as the backbone and achieves
good object detection performance trained by suitable object
detection datasets. Since our main contributions lie in the
second stage, we will emphasize the data processing pipeline
of the second stage in this section. It consists of the following
four tasks in cascade.

• Module A: Visual Features Construction
We utilize the Region of Interest (RoI) alignment and
pooling [21] to generate human and object representa-
tions. It yields an input query pair that contains human
and object features and their associated spatial informa-
tion.

• Module B: Hybrid Interaction Coding
To address the imbalanced distribution of interaction pairs
in the training samples, we propose a hybrid coding
scheme. That is, we partition interaction pairs into rare
and non-rare cases. For non-rare cases, we adopt the
traditional one-hot coding. For rare cases, we group them
into one super-class and then adopt binary codes with
error correction codes (ECCs) to encode rare cases within
the super-class.

• Module C: Discriminant Features Selection
The discriminant feature selection process is conducted
based on the interaction codes. That is, we identify a sub-
set of discriminant features against every bit assignment
of the interaction type.

• Module D: Conditional Decision on the Interaction Type
The final prediction is the aggregation of the probabilities
outputs from each interaction bit.

The model in the second stage is efficient in terms of
the number of model parameters and Floating-point Oper-
ations (FLOP) numbers. Modules B-C are statistics-based,
allowing interpretability. Furthermore, the application of error
correction codes (ECCs) to encode interaction labels is a
novel contribution in the AI/ML literature. Its advantages are
demonstrated in the experiments section.

B. Processing Modules in the Second Stage

1) Module A: Constructing a rich feature set for human
and object representations is critical. Intuitively, the relative
distances and other scenarios between the human and object
locations in images are useful for HOI detection. Utilizing the
first-stage model, we can capture the features of corresponding
regions by RoI pooling and alignment [21]. The human
and object features can be obtained from the aggregation of
different layer feature maps in the detector. The relative spatial
information includes the interaction vector and the relative
sizes of human and object bounding boxes. The interaction
vector is defined to be the difference between the centers of
human and object bounding boxes. It can be represented in

Euclidean or polar coordinate systems. Furthermore, the back-
ground information can be extracted from the whole image
features obtained from the backbone network. To summarize,
the features under consideration comprise human RoI features,
object RoI features, relative spatial features, and whole image
features. We also split human and object representations as
individual queries and determine their spatial features accord-
ingly. Some detailed descriptions are illustrated in Fig. 3. Yet,
we should point out that these features are far from perfect
since they lack precise semantic information, and discriminant
features may be concealed in noisy training samples.

To deal with imbalanced labels, our model fits subsets of the
interaction samples instead of the whole dataset. For human
queries, the classifiers are trained by subsets containing a
common object. That is, the desired outputs of a classifier
can be denoted as

P (relation | human) =
∑

c∈{Object}

P (relation, object = c | human),

where c denotes an object type and {Object} denotes the
whole object set. Under the constraint, object = c, we can
reduce the overall long-tail distribution to a few short-tail
conditional distributions. Similarly, the performance of the
classifier for object query can also be improved by condi-
tional probabilities. We employ clustering algorithms such as
KMeans to create subsets and use them to train classifiers in
each subset. We can assign a pseudo-label for each subset,
and then the classifier can be formulated in a similar manner.
The ultimate classifier for object queries can be obtained by
combining multiple subset classifiers in a weighted manner.
To make relation decisions in the inference stage, we can
aggregate the results of both human and object queries.

2) Module B: The foundation of modern machine learning
models is to capture the distribution in the training dataset
and generalize it to unseen samples. It is essential to find a
representation space that generalizes well between training and
testing samples. Representations could be highly diversified,
and the labeled data may possess a long-tail distribution in
real-world applications. It is typical to adopt the one-hot vector
to represent the classes of interest in the context of AI/ML.
There are two problems with the one-hot representation. First,
if the class number is large, the dimension of these one-
hot vectors can be high. Second, the labeled data possess
a long-tail distribution, as mentioned above. Take the HOI
benchmark, HICO-DET, as an example. It has 600 interaction
triplets. However, 138 of them have less than ten samples and
are called rare cases. If we adopt the one-hot encoding scheme
for all, we need 600-dimensional vectors to represent them and
have to train 600 one-versue-the-rest binary classifiers. The
classification performance of each rare case is expected to be
poor due to high data imbalance since it is challenging for a
classifier to learn from less than ten samples among more than
106 queries.

To handle this challenge, we merge all rare cases into a
super-class and adopt the traditional one-hot coding to encode
non-rare cases plus this super-class. Then, to differentiate



Fig. 3. The overall system diagram of the proposed GHOI. Its first stage is a pre-trained object detector. The main contributions of GHOI lie in the data
processing pipeline in the second stage. It consists of four modules: A) visual features construction, B) interaction label coding, C) discriminant features
selection, and D) conditional decision on the interaction type.

rare cases inside the super-class, we adopt the binary cod-
ing scheme. To compare the difference between the one-hot
coding and the binary coding, we take a 4-class classification
problem as an example. The four classes are represented
as {1000, 0100, 0010, 0001} in the one-hot encoding and as
{00, 01, 10, 11} in the binary coding. Each bit represents a
binary split. For the one-hot coding, we can train four binary
classifiers that handle the one-versus-the-rest classification
problem. For the binary coding, we only train two binary
classifiers. The first one separates {00, 01} from {10, 11}
based on the first bit while the second one splits {00, 10} from
{01, 11} based on the second bit. Each binary classifier can be
viewed as a decoder. Nevertheless, each classifier may have
mistakes, leading to wrong aggregated results. We use error
correction codes (ECC) to enhance the robustness to have a
remedy. To follow the above example, we can assign three-bit
codewords to them, i.e., {000, 011, 101, 110}. Every codeword
pair has a Hamming distance of 2 (i.e., have two different bits)
after adding the error correction bit. Here, we use Hamming
codes [22] to improve the performance of straightforward
binary codes and ensure that each representation differs from
others with a Hamming distance no less than 3 in GHOI.

The performance of four coding schemes is compared in
Table I for the HICO-DET dataset. They are one-hot codes,
binary codes, Hamming codes, and a hybrid coding scheme.
The hybrid coding scheme adopts the one-hot coding for
non-rare cases plus the super-class of all rare cases and the
Hamming codes for rare cases. We see from the table that
the hybrid coding scheme achieves the best results, whose
mAP value is substantially higher than that of one-hot codes.
It is also worthwhile to point out that Hamming codes have a

smaller model size, which helps reduce the model size of the
hybrid scheme.

TABLE I
PERFORMANCE COMPARISON BETWEEN FOUR CODING SCHEMES FOR

INTERACTION LABELS IN MAP (%). UNDER THE SAME ARCHITECTURE,
THE HAMMING CODES GIVE THE BEST PERFORMANCE FOR RARE CASES,

WHILE THE ONE-HOT CODES OFFER THE BEST PERFORMANCE FOR
NON-RARE CASES. THE HYBRID CODING SCHEMES YIELD THE BEST

OVERALL PERFORMANCE.

Methods Default Model SizeFull Rare Non-Rare
GHOI (one-hot codes) 20.55 13.47 22.66 56.4M
GHOI (binary codes) 16.35 7.97 18.86 15.4M
GHOI (Hamming codes) 19.19 14.50 20.59 27.7M
GHOI (hybrid) 24.53 19.26 26.09 45.9M

3) Module C: Each bit representation in Hamming codes
corresponds to a partition of labeled interactions into two sets.
In other words, we relabel interactions of rare cases into two
types denoted by 0 and 1, respectively. For a given binary
label, we need to select discriminant features to facilitate
the classifier in the next module. This can be achieved by
applying the Discriminant Feature Test (DFT) [23] to all input
features one by one. For a given 1D input feature, we place the
feature value of each labeled training sample in a line segment
bounded by the range of the maximum and minimum values,
as shown in Fig. 4. Then, we search for the optimal partition
point on this line segment to minimize the loss function, which
is defined as the weighted sum of binary cross-entropies of the
left and right partitions. A feature is more discriminant if it
has a lower loss value. Then, we can plot the loss value curve
from the lowest to the highest and use the elbow point to select
a set of discriminant features from the whole feature set.



Fig. 4. Visualization of DFT, where pink and orange dots represent the “0”
and “1” binary labels, and the loss function is the weighted cross-entropy sum
of samples in the left and right parts of the partition line.

4) Module D: We divide the desired decisions into sequen-
tial subproblems instead of training a complex classifier for the
skewed data distribution. Each subproblem can be expressed
clearly, step by step. First, we attempt to maximize the con-
ditional probability of an interaction (or relation) conditioned
on the human and object representations, which can be written
as

P (relation | human, object)

= P (relation | human) ∗ P (object | relation, human)

P (object | human)

= P (relation | object) ∗ P (human | relation, object)
P (human | object)

∼ αP (relation | human) + βP (relation | object),

where α, β are learnable parameters. Then, the two conditional
probabilities in the last equation can be further expressed as

P (relation|human) =
∑

c∈{Object}

P (relation, object = c|human)

P (relation|object) =
∑

d∈{Human}

P (relation, human = d|object),

where c and d are class labels and {Object}, {Human}
are the object sets and clustered human representations.
Suppose we use a bit stream, B = (b0, b1, · · · , bn−1),
to represent a relation. Then, we would like to maximize
P (relation, object = c|human) and P (relation, human =
d|object), called the human query and the object query,
respectively. The conditional probability of human queries can
be written as

P (relation, object = c|human)

= P (B, object = c|human)

=
⋂

0≤i<n

P (bi, object = c|human).

The conditional probability of object queries can be found in
the same manner.

All the probability estimators in GHOI are XGBoost [24].
For each bit classifier, we set the number of estimators and the
depth of the tree to 300 and 3, respectively. The aggregation of
the bit stream prediction is conducted by Linear Discriminant
Analysis (LDA).

IV. EXPERIMENTS

A. Datasets

V-COCO [30] and HICO-DET [1] are two commonly used
HOI detection datasets. V-COCO is a subset of the MS-COCO
dataset. It contains 2,533 training images, 2,867 validation
images, 4,946 test images, and 24 actions. HICO-DET is larger
than V-COCO. It comprises 37,633 training images, 9,546 test
images, 117 actions, and 600 interactions for various action-
object pairs. Its training set has 117,871 human–object pairs
with annotated bounding boxes, while its testing set contains
33,405 such pairs. HICO-DET is a challenging dataset. The
600 labeled interactions can be divided into 138 rare cases and
462 non-rare cases. Rare cases have less than ten samples in
the training set. We use the mean Average Precision (mAP)
as the evaluation metric, which is the mean of the average
precision of all classes.

B. Experimental Results

1) Performance Benchmarking against Other Two-stage
Models: We compare the performance of GHOI against other
SOTA two-stage models, including both multi-stream and
graph-based models, in Table II, where the top and the second
performers are in bold and underlined, respectively. GHOI
achieves the second-best mAP values in most categories for
HICO-DET. Our GHOI model also has the smallest number of
learnable parameters. It’s important to note that GHOI relies
solely on visual features and doesn’t incorporate external word
embeddings or pose estimation information during training.
DRG [19] uses extra language models in the training and
prediction. Graph-based HOI models need iterations of op-
erations in graph convolutional networks, leading to a higher
computation complexity, to be discussed at the end of this
subsection.

2) Performance Benchmarking against One-stage Models:
Transformer models achieve impressive performance in vari-
ous computer vision tasks at the expense of very high com-
putational complexities in both training and inference. In the
encoder-decoder-based detector, the model requires auxiliary
queries for detection. There is no rule of thumb to determine
the hyperparameters of the queries and save on computation
requirements. Besides model efficiency, the training process is
nontrivial for transformer-based one-stage HOI models. HICO-
DET is a dataset with a long-tailed distribution. The number
of rare cases with less than ten samples has more than 106

labeled pairs. The performance of one-stage models would
drop dramatically if no finetuning were conducted on object
detection and action detection individually. We compare the
performance of our GHOI method and those without delicate
finetuning in Table III. It was observed in [17] that imbalanced
triples tend to decrease the object detection performance. In
contrast, our two-stage GHOI method is more robust with
respect to imbalanced triples. It can retain the performance
of object detectors and plug-on relation detection features.

3) Comparison of Computational Complexity and Carbon
Footprint: We compare the computational cost of GHOI,



TABLE II
DETECTION PERFORMANCE COMPARISON OF SOTA TWO-STAGE MODELS IN MAP (%) FOR THE HICO-DET DATASET UNDER THE DEFAULT AND

KNOWN OBJECT SETTINGS AND FOR THE V-COCO DATASET. THE MODEL SIZES IN THE PARAMETER NUMBER (M) ARE ALSO COMPARED, WHERE THE
NUMBERS ARE TAKEN FROM LIM ET AL. [5].

Architecture Method Param(M)(↓) Backbone Default(↑) Known Object(↑) V-COCO(↑)
Full Rare Non-Rare Full Rare Non-Rare APS1

role APS2
role

Two-Stage Methods

Multi-Stream

No-Frill [2] 72.3 ResNet152 17.18 12.17 18.08 - - - - -
PMFNet [25] 49.3 ResNet50 17.46 15.65 18.00 20.34 17.47 21.20 - -

ACP [26] - ResNet101 21.96 16.43 23.62 - - - 53.2 -
PD-Net [3] - ResNet152 22.37 17.61 23.79 26.86 21.70 28.44 52.0 -
VCL [18] - ResNet50 23.63 17.21 25.55 25.98 19.12 28.03 48.3 -

Graph-Based

RPNN [27] - ResNet-50 17.35 12.78 18.71 - - -
VSGNet [28] 84.9 ResNet-152 19.80 16.05 20.91 - - - 51.8 57.0

DRG [19] 46.1 ResNet50-FPN 21.66 19.66 22.25 - - - 51.0 -
SCG [9] 53.9 ResNet50-FPN 29.26 24.61 30.65 32.87 27.89 34.35 54.2 60.9

Green Learning GHOI (Ours) 45.9 ResNet50-FPN 24.53 19.26 26.09 27.64 22.70 29.12 50.8 56.3

TABLE III
DETECTION PERFORMANCE COMPARISON IN MAP (%) BETWEEN GHOI

AND THREE END-TO-END TRAINED ONE-STAGE METHODS (WITHOUT
FINETUNING OBJECT AND ACTION DETECTORS INDIVIDUALLY) FOR THE
HICO-DET DATASET, WHERE THE MAP RESULTS OF HOTR, AS-NET,

AND QPIC ARE TAKEN FROM MA ET AL. [29].

Methods Default
Full Rare Non-Rare

HOTR [10] 23.46 16.21 25.65
AS-Net [12] 24.40 22.39 25.01
QPIC [13] 24.21 17.51 26.21
GHOI (ours) 24.53 19.26 26.09

TABLE IV
THE COMPARISON OF FLOP NUMBERS PER QUERY BETWEEN GHOI AND

TWO SOTA TWO-STAGE MODELS.

Two-Stage Models Default Parameters FLOPs
Full (per query)

SCG (Graph) 29.26 53.9M (1.2x) 54M (4,500x)
UPT (Transformer) 32.62 54.7M (1.2x) 190M (15,800x)

GHOI (Ours) 24.53 45.9M (1x) 12K (1x)

UPT [8] and SCG [9] in Table IV. UPT is a transformer-
based method, while SCG is a graph-based method. They are
SOTA two-stage HOI methods (see Fig. 2 and Table II). Both
of them demand a large number of iterated computations. The
table shows that in the inference stage, the FLOP number per
query of GHOI is 1/4,500 and 1/15,800 of that of SCG and
UPT. Clearly, GHOI is the most eco-friendly in the carbon
footprint measure.

V. CONCLUSION AND FUTURE WORK

A green HOI detector, called GHOI, was proposed in this
work. It is both mathematically transparent and computa-
tionally efficient while offering competitive detection perfor-
mance. The use of ECC for the coding of rare interaction
types helps improve the robustness of GHOI. It appears that
the same idea can be generalized to other detection problems.
It is worthwhile for further investigations in the future.
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