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Abstract

An encoding mechanism for omni-directional images is proposed. It extends convo-
lution widely used in planar images to omni-directional images on sphere surface. Unlike
other convolution kernels, the proposed mechanism gives an add-on solution to be adapted
in the existing neural network architectures to process omni-directional images. Experi-
mental results on convolution neural network (CNNSs) and residual nets demonstrate the
effectiveness of the proposed mechanism, achieving state-of-the-art performance in omni-

MNIST, omni-CIFAR10, and omni-CIFAR100 datasets.

Keywords: Omnidirectional, Encoding, Convolution
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Chapter 1 Introduction

Omnidirectional image gives a panoramic representation of physical spaces when
compared to regular 2D images. It enables significant applications such as Google Street
View, virtual tours of real estate, 360° showcase of automobile, and virtual-reality expe-
rience. Nowadays, omnidirectional image can be acquired by either consumer electronics
such as smartphones or 360° cameras, or professional devices such as 3D scanner[20] or

DSLR cameras with a rotator.

Spherical signals are often represented as a variety of data types, such as image
grid[ 1 2], point clouds[23], or voxels[21][26]. Equirectangular projection is perhaps the
most prevailing way to project various spherical signals onto the 2D space. Equirectan-
gular projection is used extensively in image capturing, while most of the omnidirectional

image datasets are composed of equirectangular projected images.

Equirectangular projection maps the longitude and latitude coordinates of the spher-
ical image to the x- and y-coordinates of a plane image, respectively. This, however, is
often accompanied with undesired distortions around the north and south poles, as well as
discontinuity on the two sides (see fig. 4.1). As a result, special care must be taken before
applying conventional euclidean-based learning algorithms [3] to equirectangular images

projected from spherical signals.

1 doi:10.6342/NTU202101356
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Figure 1.1: Distortion near poles (red part), discontinuity on two sides (blue part), and
normal grid near equator (yellow part)

To deal with the distortion and discontinuity issues as mentioned above, multiple
learning schemes were proposed such as Spherical CNN[3] and SphereNet[6]. In spheri-
cal CNN, the mathematical framework of rotation-invariant convolution on SO(3) is de-
rived and analyzed. By regarding the unit sphere S? as the quotient map SO(3)/SO(2), a
spherical signal can be extended to a function on SO(3), on which spherical CNN can be
applied. However, it is still not clear how the spherical CNN framework can be applied
to other prevailing modules beyond convolutions. Furthermore, since the convolution
is performed on the three-dimensional SO(3) manifold instead of the conventional two-

dimensional S? manifold, the memory usage becomes a dire burden.[1]

SphereNet kernel[4] retains the receptive field on the tangent plane and computes
the offset of the sampling locations of the convolution filters based on gnomonic projec-
tion. The reprojection local region addresses the heavy distortion issue of patterns near
the North and South poles and the uniform sphere sampling addresses the issue of over-
weighting on high-latitude regions. However, the inconsistency of physical meaning the
extracted feature and the equirectangular projected image makes the kernel incompatible

to residual modules. (see Sec. 4.3 for more details)

In this work, we propose a spherical encoding to improve the performance of convo-

lution neural network on omnidirectional data. The contributions are listed as below:

* We propose a spherical encoding based on great circle distance to calibrate the con-

2 doi:10.6342/NTU202101356
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volution weights on distorted regions at high-latitudes.

* The proposed spherical encoding is compatible to prevailing deep learning modules
such as residual module, with its effectiveness supported by experimental results on

omnidirectional image classification tasks.

» We give a physical interpretation of each pixel computed from different kinds of

convolution on equirectangular projected images in the aspect of receptive fields.

3 doi:10.6342/NTU202101356
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Chapter 2 Related Work

Many convolution-based models have been proposed for image processing tasks due
to the great success of convolution neural network (CNN). However, conventional con-
volution is originally designed for planar images, which may not be ideal for spherical

images where distortion and discontinuity issues must be reckoned with (see fig. 4.1).

2.1 CNNs Based on Different Projections

An intuitive solution to solve the distortion problem in equirectangular projected im-
age 1s to refine the distorted areas through multiple perspective projections. Lai et al. [17]
conduct a segmentation task through cube map projection, which relieves the distortion

near the poles by the top/bottom/left/right/front/back views of the sphere.

To deal with the discontinuity issue in equirectangular projected image, Yang et al.
[27] conduct object detection task on panoramic images using multi-angle projection. In
this approach, the omnidirectional image is represented by multiple overlapping 2D im-
ages obtained by re-projecting the equirectangular image from multiple angles among the
equator. The overlapping images ensures each point on the sphere will have a neighbor-
hood that lies within at least one projected image, that is, the points of discontinuity that
correspond to the edge of any projected image lie within the continuity region of some

5 doi:10.6342/NTU202101356
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other projected image. As such the discontinuity issue is deal with. However, since mul-
tiple projected images are required to represent an omnidirectional image, the multi-angle
projection requires lots of repeating calculation on each of the multiple projected images

in both training and testing phases.

2.2 Spherical CNNs

Instead of processing the projected spherical signals on a plane, another approach is
to reconstruct the signals on a sphere in essence. Just as the 2D convolution has the shift-
invariance property, it is desirable that the convolution on the spherical signals should be

rotation-invariant.

Towards this end, in Spherical CNNJ[3] a rotation invariant convolution on spherical
signals was proposed. As an extension, Cohen et al. further proposed guage equivari-
ant convolutional networks[ 4] for signals on arbitrary manifolds, as well as Icosahedral
CNN]J2] which is a special case of gauge equivariant convolutional network on spherical
signals in the form of icosahedral grids. In gauge equivariant convolution, the feature
vectors of neighboring pixels in the receptive field are first transformed to a common lo-
cal chart through parallel transport[25], at which the convolution is taken as a weighted
sum of the corresponding transformed features. This allows for geometric features to be

processed in an equivariant manner independent of the particular gauge selection.

In Esteves et al.’s work [9], the spherical convolution is computed through spherical
fourier transform. That is, the spherical Fourier coefficients of the convoluted signal is
computed as the product of the spherical Fourier coefficients of the original signal and the
filter.

6 doi:10.6342/NTU202101356
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Although the mathematical theory for rotation-invariant convolution is well estab-
lished, it either poses major computational overhead or significant constraints that the

model should be linear [15], hindering its application to deep convolution modules.

2.3 Self-defined Representations and Kernels

There are various representations to a spherical signal, and for each representation
various self-defined kernels were proposed to handle the distortion and discontinuity is-
sues. Coor ef al. [4] and Fernandez et al. [10] used equirectangular projected images as
input, where the sampling locations of the convolution filters were adapted based on the

geometry of the spherical image representation.

Dai et al. [6] handled the issue of distorted features by using deformable kernels.
The additional parameters, x-, y-offsets, are trained along with the weights of convolution
kernels, and deformable kernels can self-adjust the receptive fields by moving the position

of input pixels through offsets.

Lee et al. [19] addressed the distortion issue through icosahedron representation of
spherical signals, where each pixel is a subdivision surface on the icosahedron mesh. To
deal with the discontinuity issue, an extra table storing the adjacency information between

pixels is maintained for computing convolution and pooling.

In Chao et al.’s work [29], the spherical signal is represented as triangular grids
through subdivision on icosahedron, and each triangular grid is further represented by
regular square grids while dealing the discontinuity issue through padding. A 3 x 3 con-
volution kernel pretrainable from plain images was then proposed as an arc-based inter-
polation of the neighboring square grids to mimic convolution on icosahedron, which is a

7 doi:10.6342/NTU202101356
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weighted sum of six neighboring triangular facets of a vertex.

Spherical signals can be sampled more properly on self-defined representations than
on planar images. However, the transformation of each self-defined representation re-
quires extra computational cost, and the kernels can not adapt to CNNs originally designed

for images with square grids.

8 doi:10.6342/NTU202101356
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Chapter 3 Method

We consider an equirectangular image by two parts: 1) the position of a pixel is re-
garded as positional information, and ii) the context and the value of channels are regarded

as features. In equirectangular projection:

FA @) = (B = Xo), Ry — o)) (3.1

Here, R is the radius of the globe, (A, ) is the longitude and latitude of the location
to project, (Ao, ¢o) is the central parallel and the meridian of the map, and (z,y) is the
coordinate on the equirectangular projected image. If we acquire the coordinate of input

pixel we can have the positional information of pixel from eq. 3.1.

Coming up with the positional encoding in self-attention mechanism, we introduce
the relationship between convolution and self-attention in sec. 3.1 and positional encoding

in sec. 3.2. We propose our structure in sec. 3.5.
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3.1 Convolution and Self-Attention on Feature Extrac-

tion

In 2D convolution the pixel value on position (4, j) is evaluated as:

fi.3)= Z Flaw.am) Jitaw j+am)- (3.2)
Awel{-15 )51}
Ape{-15]-15]}

— —
wo[Rolx
[E——

Here FeRE*ExDin ig the weights of the convolution filter, K is the size of the filter,
and JERW*H*Din g the input image of size W x H and D;,, channels. J; ;)R is the
channel values of the pixel on position (7,5). Note that convolution is a shift-invariant
operation, which is not the case for equirectangular projected images. For instance, shift-
ing an object from the equator to the North or South pole on sphere leads to not only a
shift in the equirectangular projected image, but also a distortion that depends on latitude.

Therefore, a position-dependent filter is needed in panoramic image processing.

Another useful method is self-attention mechanism for computer vision. Let /€

RWHxDin be the flattened image. In self-attention, the output of a query pixel ¢ is com-
puted as the weighted sum of every key pixel with the weight of attention probabilities,

where the attention probabilities measures the similarity between the query pixel and a

key pixel as follows:

WH
Self-Attention(/ )q:Zsoftmax(Aq;)kI ke Woai
k (3.3)

A
softmax(A,.) k:M.

) ZpeXp(Aq,p)

Here, W, €RPin*Dout Jinearly transforms the input image I from D;,, channels to D,

10 doi:10.6342/NTU202101356
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channels, AcRWHXWH denotes the pairwise attention score between each pixel in the
image I, and softmax(A, ) is the attention probabilities on pixel ¢ contributed by pixel
k. The attention score between pixel ¢ and pixel k£ is commonly calculated in an inner

product form:

A:(Iquy)(IWkey)T:[WquW,fey[T. (3.4)

Here, W, Wi, ERPin*Dout Jinearly transform each pixel from R to RPeut, on which
the inner product is computed as attention score between pixels. In self-attention mecha-

nism, we can use positional encoding to preserve the positional information of each pixel.

A:(I+E)qukaTey([+E)Ta (3.5)
where EcRWH*Din ig the positional encoding of the pixels. (see Sec. 3.2 for more details)

It has been pointed out by Cordonnier ef al. [5] that the convolution layer can in fact
be realized through multi-head self-attention mechanism, where the position information
of each key pixel is taken into account through positional encoding. In this work, we
extend the idea of realizing the convolution operation through self-attention mechanism to
omnidirectional images. Moreover, we propose Spherical Encoding for equirectangular
projected image to preserve positional information of each pixel based on the great circle

distance. We will further elaborate spherical encoding in sec. 3.2.

3.2 Encoding with Positional Information

There are several ways of positional encoding to preserve the positional information

of pixels, including absolute and relative encoding [ 7]. In absolute encoding, each pixel p

11 doi:10.6342/NTU202101356
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is represented by a fixed or learned vector Egbs c€RPin by which the positional information
between a pair of pixels is represented by the dot product between their encoding vectors.

More precisely, the attention score between query pixel and key pixel is computed as:

Alay =L+ Eg)Wary Wi, (I E")"

=1 Wy Wi I+ B3 Wy Wik I+ LW WiE BT+ B W, W BT
(3.6)

where [,eRP is the ¢'" pixel in teh flattened image 1.

On the contrary, in relative encoding, it is the relative position between the key and
query pixel q,ke[1,W —1]x[0,H —1] that is considered, by which the attention score is

computed as:

A;ﬂ(e—lq:([q+e)quleg;y(Ik_l_El:e—lq)T
:[quryWI?eng+Iqury(WI?eyEﬁilg)+(quTy)ngeng+(quTy)(ng;yEﬁilz)

=L Wy Wit IE+ I W o Wi BV uWl TE oW BT

(3.7)
where E]Ze_lqERDm is the relative encoding vector that depends on the relative position

between the key and query pixels, and e€R”# is a learned or fixed vector.

3.3 Spherical absolute encoding

In order to contain the spherical topological information, we propose Spherical En-
coding based on the great circle distance. For two point (A1,¢1), (A2,¢2) on the unit sphere

12 doi:10.6342/NTU202101356
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in spherical coordinate, the angle in between can be written as:

d((A1,1),(A2,09))=arccos((cosA;cosy,8in\; cosp1,singy )-(COSA2C0SEPs,SINA2C08 07, SiNps ) )

—arccos(sing; sings 408y COSPaCOSA1COS Ao +COSY1 COSPaSIinAISinA,).

(3.8)
Here, the arc-cosine function can be approximated by the Taylor series expansion:
d((A,01),(A2,02)) I i 1 (sing;8ingws+CcoSP1COSEP2COSACOSA2+COSP1COSPaSINA SINA,)
2 22k 2 2k+1
T
NE_\I/n()\lvsol)'\Iln()\27902)7
(3.9)

Where U,,(\,p) is the spherical encoding that corresponds to the n'* order Taylor series

approximation, which is a >, (2k; 3) = §n3 + %nQ + %n—i—i’) dimensional vector where

each element (indexed by k,p,q,r where 0<k<n, 0<p,q,r, and p+q+r=2k+1) takes the

1 (2k
(W (X0) o pgr= o ( k:') ”p q‘T'sinpgocosq”gocosq)\sinT)\, (3.10)

Though Taylor expansion has infinite terms, as convolution usually operates on lo-

form:

cal patterns, the low order terms are fairly enough to elaborate positional information of
adjacent pixels appropriately. The first order spherical encoding is given by Wo(\,p)=

(sing,cospcos\,cospsin).

3.4 Spherical relative encoding

By rewriting eq.3.9 with (1, A1) and (¢2, A\2) replaced by (¢,A) and (p+Ap, A+

AN), respectively, we can express the great circle distance in terms of spherical relative

13 doi:10.6342/NTU202101356


http://dx.doi.org/10.6342/NTU202101356

encoding as follows:

d((A1,1),(A2,02))

o0
m 1 (2k)! . . . . 2k+1
=—— E 2k 3 (sing;sings+coSpP1COSP2COSA1COSAa+COSP1COSPLSINASINA;)
2 = 02 (k!) 2k:+1
T o= 1 (2k)!

o 92k (1.1)2
2 2% (k) 2k:+1

(sm pcos Ap+singcospsinAp-+cos?pcos Apcos AN — cos<psmgpsmA<pcosA)\)

SR () RV (A AN
(3.11)

Here {7 (p,\) and pFey) (Ap,AN) are the query/key encodings that correspond to the
n'" order Taylor series approximation, respectively. The query encoding @flqry)(gp,)\) 1s
a %k4+§k3+2?)—3k2+?k:+4 dimensional vector, with each element (indexed by k,p,q,r,s

where 0<k<n, p,q,r,s>0, and p+q+r+s=2k+1) taking the form

T 1 (Qk)' ]' S, s r+s
[(I)glq y)<90’)‘>}k,p,q,r,s:@ I A /p!qlrls!(—l) sin2ptat © cosdT2rt .

The key encoding has the same dimension with elements taking the form

6 1 (k) [T e
(2N ACAN] =38 i\ g€ Apsin®* Acos AN

In particular, for first order approximation the query and key encodings are given by

@équery) (¢, \)=(sin®p,sinpcosyp,cos’p, —sinpcosy)
CD(key (Ap,AN)=(cosAp,sinAp,cosApcosAN,sinApcosAN)
Spherical relative encoding allows the proximity information between query and key pix-
els on the sphere to be represented as two integral parts in equirectangular format: the

query encoding that only depends on the location of the query pixel (¢,\), and the key

encoding that solely depends on the relative position (Ap,A\). This allows us to effec-
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tively adjust the attention scores for pixels in the receptive field of equirectangular format

based on its proximity on the sphere.

3.5 Encoding and Convolution

Though self-attention model hits a great success on various computer vision[24][30]
and natural language processing[&] applications, its dire memory usage poses a serious

issue to be reckoned with. More precisely, for an input image of size W x H and D, €

WH

O(W H) channels, the self-attention operation requires O(W?2 H?) memory usage, a Dotb"

fold increase compared to the convolution-based approach which requires O(W H (D, +

D,.+)) memory usage.

To relieve the huge memory usage of self-attention, a common approach is convolution-
based attention[2&][22] which uses additional parameters and incorporates techniques
such as spatial attention or channel attention to learn the importance of features. This
leads to memory usage in the order of O(W H X (D;,+Dyt)), for which D;,, and D,,; are

usually much smaller than W H.

Instead of using additional parameters, here we use the inner product of spherical

encoding as the attention map to refine the convolution features:

eUNisps),Nit Ay it ag))

f*(Zaj)N Z A Nipnt 2yiar ) F(AW,AH)',J(Z'—FAW,]'-&-AH)
AWE{—LngL%J}EA@VG{*LngL%J}e v "
Ape{-L5]15])  Apel-L5]-15])

ALK || 5]y 2oty e K] X
Ape{-|5]. 1K)y Ayel-15]-151

e~ Vn(Aipi) WnNit Ay @itay)

o IO ) Un Oy g #5580 Flawan) Ji+aw.j+am);

(3.12)
where (\;,p;) is the longitude and latitude of the pixel (7,5) on the equirectangular pro-
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jected image.

In equirectangular projected images, pixels near the north and south-pole which rep-
resent small area on the sphere will be overly weighted in conventional convolution. In
our proposed spherical encoding, however, observe that in the most prevailing 3 x 3 ker-
nel size scenario, the great circle distance between center pixel and high-latitude pixels are
generally smaller than that of low-latitude pixels(fig. 3.1). This generally leads to smaller
weights assigned to high-latitude pixels and mitigates the issue of overly weighted high-
latitude pixels suffered in conventional convolution on equirectangular projected images.
Similarly, the discontinuity of two sides of the image can also be fixed by the sinp term

in the spherical encoding.

Figure 3.1: In the 3x 3 kernel size setting, the pixels which are further away from the
center (blue) represent greater surface area, and is assigned more attention score through
Spherical encoding. (eq. 3.12)

K K

3 Encoding vector K
) inner products A g [y i =
Wi, ) —_——r T __, i L K 1 — {5 — ¢ ; —_ 5>
A between query pixel i. < H - &Q— k[ 7] 1)
Hliraw - @resit) and its neighbors - )
I (Proposed)
‘ L4 K (Conventional Convolution)
~ convolution i
2 B kernel X (+) :dot product
© Kk Sy @ () : softmax
P #: :X) : pointwise product

Figure 3.2: Process of Spherical encoding (eq. 3.12). Input can be either omnidirectional
images or feature maps from previous layers.
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Chapter 4 Experiment

4.1 Dataset

Omnidirectional MNIST is proposed by Coors et al.[4]. The raw MNIST[ 18] image
is placed on tangent planes randomly drawn from the sphere, and the equirectangular pro-
jection of the scene is rendered at a resolution of 60 x 60. Similar method can be applied

to generate the omnidirectional datasets omniCIFAR from CIFAR10 and CIFAR100[16].

¢je) 4]

Figure 4.1: Omnidirectional dataset includes images with severe distortion around the
North and South poles and discontinuity on the left and right sides.

4.2 Classification on omniMNIST

Due to a variety of representations of spherical signals, we conduct the experiments
on the proposed spherical encoding as well as a variety of baselines mentioned in [4]. Here
S2CNNTJ3] is a convolution architecture defined in the SO(3) group; GCNNJ 3] takes a
spherical signal as a weighted graph and the weights of the edges are given from great
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circle distance; SpherePHD[ | 9] represents the spherical signals on icosahedral mesh, and

proposes convolution and pooling under this representation.

4.2.1 Experiment Setup

We followed the experiment setup in [4], and used omniMNIST as benchmark to
compare the feature extraction methods. The backbone network is composed of two con-
volution layers and max-pooling, followed by a fully-connected layer with 10 outputs.
The first convolution layer has 32 filters with kernel size 3 x3, and the second convolu-
tion layer has 64 filters with kernel size 3x 3. Each convolution layer is followed by a
ReLU activation function, and the fully connected layer is followed by a softmax func-
tion. For multi-layered model, we added more convolution layers with 64 filters, where

the results are reported in Table 4.2.

Method Input Type Accuracy
Conventional Convolution Cubemap Image 0.8997
Conventional Convolution Equirectangular Image 0.9039
SpherePHD [19] Octahedral Representations 0.8813
S2CNNJ3] SO(3) signal 0.8814
GCNNTJ13] Graph 0.8279
SphereNet[4] Equirectangular Image 0.9402
Spherical Encoding (ours) Equirectangular Image 0.9322

Table 4.1: Classification accuracy comparison of the proposed spherical encoding and
various baselines on omni-MNIST.

Accuracy
Convolution 2 layer 3layer 4layer 5layer ResNetl8
SphereNet 0.9402 0.9718 0.9740 0.9743 0.9910

Spherical Encoding (ours) 0.9322 0.9513 0.9666 0.9720 0.9915

Table 4.2: Classification accuracy on multi-layered models of various depths on omni-
MNIST.
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4.2.2 Results

Table 4.1 compares the accuracy performance of the proposed spherical encoding
and various baselines on omniMNIST. It follows that the proposed spherical encoding
has better ability to extract spherical features on equirectangular projected images and

outperforms conventional convolution.

Though the proposed spherical encoding slightly falls behind SphereNet on the shal-
low two-layer CNN backbone, our method can be easily adopted to deeper models. Ta-
ble. 4.2 shows that the proposed spherical encoding is capable of adapting to various
existing deep learning model and the nowadays widely adopted residual modules such as
ResNet18[11], achieving the state-of-the-art performance on omniMNIST classification

task.

4.3 Residual Module

Residual module has become a common architecture design for deep learning which
often makes deep network structure more easily to optimize, and achieves better perfor-
mance[ ! 1]. To elaborate the adaptability of the proposed spherical encoding in deeper
models with residual modules, we conduct experiments on classification task over omni-
directional datasets, and demonstrate the ability of feature extraction in terms of classifi-

cation accuracy.
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4.3.1 Experiment Setup

The Resnetl8 (fig. 4.2) is taken as the backbone where the convolution unit is re-
placed by (a) conventional convolution, (b) SphereNet convolution, and (c) spherical en-
coding with convolution (our method). Note that in the experiement of SphereNet con-
volution, the pooling functions are substituted by the spherical pooling in their own work

[4], for the purpose of addressing the issue of oversampling on high latitude regions.

N N N Y

© @« o w0 o o
by % 3 N o rel 0 - ¥
3 g (& ll2 x5 (% lle al |8 L2 al |3
& >»3—>5—P3s—4rE—oE—PsJ>E—E—P3 A x—F> e
z 2 z ] > ] > > 2
2 - 2| |2 = [E e [
°© o ° 8 3 8 3 8 3

Figure 4.2: The Resnet-18 backbone.
Convolution Dataset Accuracy

Conventional Convolution omni-CIFAR10  0.8339
SphereNet Convolution omni-CIFAR10  0.8346
Spherical Encoding(ours) omni-CIFAR10  0.8461

Conventional Convolution omni-CIFAR100 0.6020
SphereNet Convolution omni-CIFAR100 0.5979
Spherical Encoding(ours)  omni-CIFAR100 0.6413

Table 4.3: Comparison of various convolution/encoding schemes on ResNet18.

4.3.2 Result

As demonstrated in Table. 4.3, the proposed spherical encoding yields the best re-
sults. It is also observed that SphereNet convolution performs slightly worse than conven-
tional convolution in the omniCIFAR100 classificaiton task. This indicates that SphereNet
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convolution does not benefit from the residual structures. Here we give an intuitive ex-

planation as follows (as shown in Table.4.4):

As illustrated in fig. 4.3, in SphereNet convolution the distortion issue is dealt with by
maintaining the size of receptive field on the tangent plane, with the output representing
the convolution of spherical data on the tangent plane. This leads to a receptive field
whose size depends on the latitude in the equirectangular format. As in residue module the
convolution result is added to the original input in equirectangular format, we hypothesize
that the latitude-varying receptive field in the equirectangular format causes inconsistency

in the addition operation in residual modules.

In contrast to SphereNet, in our method the size of receptive field remains identical in
the equirectangular format, regardless of the latitude. That is, the convolution is computed
as a weighted sum of samples drawn from a surface region whose latitude and longitude
spans K Ay and KA\, respectively. Here K denotes the kernel size, while A and A\
denotes the latitude and longitude spans of the surface region that a pixel in equirectangular
format represents, respectively. The distortion issue is instead dealt with through spherical
encoding, where pixels near the North and South poles will be assigned smaller weights
computed as the dot product of spherical encoding, which is consistent to the intuition
that high latitude pixels in equirectangular format represents smaller surface regions on

the sphere.

4.4 Self-Attention Model

We followed the experiment setup in [5] and [24] to demonstrate the effect of various

encoding schemes, where conventional convolution and fully self-attention based models
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operation input physical meaning

Conventional . . . . S .
i convolution adjacent pixels weighted sum in local region
Convolution
SphereNet . ixels calculated from \
P : convolution pIx ouatee o weighted sum on tangent plane
Convolution[4] gnomonic projection
. . . eighted sum in local region
Spherical convolution with welg | &l

adjacent pixels with smaller weight

Encoding (ours) weight from encoding for higher latitude pixels (eq. 3.9)

Table 4.4: Comparison between spherical encoding, convolution, and SphereNet

(@)

(b) 5 L

Figure 4.3: The physical meaning of pixel on equirectangular projection and on SphereNet
kernel. (a) The pixel on the actual sphere surface by equirectangular projection (b) The
receptive field of SphereNet kernel.

are compared over omnidirectional image datasets. We use the aforementioned Resnet18
as the backbone, and replaced the convolution layers with self-attention layers incorpo-

rated with various encoding schemes, as illustrated in Table. 4.5 and 4.6.

4.4.1 Result

As illustrated in Table. 4.5 and 4.6, the fully self-attention model with either absolute
or relative encoding does not perform as good as conventional convolutions for spherical

data. For fully self-attention models, the proposed absolute spherical encoding yields bet-
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Omni-CIFAR10

Feature extractor Encoding Accuracy
Conventional Convolution - 0.8339
Self-Attention absolute encoding 0.8005
Self-Attention relative encoding 0.8178
Self-Attention spherical encoding (abs 0" order) 0.8230
Self-Attention spherical encoding (rel 0" order)  0.8000

Conventional Convolution spherical encoding (abs 0" order) 0.8461
Conventional Convolution spherical encoding (abs 1°¢ order)  0.8511
Conventional Convolution spherical encoding (abs 2"¢ order) 0.8369
Conventional Convolution spherical encoding (rel 0" order)  0.8331
Conventional Convolution spherical encoding (rel 1% order)  0.8389

Table 4.5: results for different encodings on omni-cifar10

Omni-CIFAR100

Feature extractor Encoding Accuracy
Conventional Convolution - 0.6020
Self-Attention absolute encoding 0.5747
Self-Attention relative encoding 0.5856
Self-Attention spherical encoding (abs 0" order) 0.5912
Self-Attention spherical encoding (rel 0** order)  0.5815

Conventional Convolution spherical encoding (abs 0 order) 0.6404
Conventional Convolution spherical encoding (abs 1% order)  0.6413
Conventional Convolution spherical encoding (abs 2"¢ order) 0.6228
Conventional Convolution spherical encoding (rel 0" order)  0.6186
Conventional Convolution spherical encoding (rel 1% order)  0.6246

Table 4.6: Comparison of various encoding schemes on omni-cifar100

ter result over traditional absolute and relative encoding. The conventional convolution
also benefits from absolute spherical encoding. The relationship between the surface area
where each pixel stands and the great circle distance between pixels is data-driven. The
order of approximation can be used as a hyperparameter in the training phase, and further
improvements can be achieved by tuning the order of approximation in spherical encod-

ing.
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Chapter S Conclusion

In this work, we propose Spherical Encoding for omnidirectional images, and com-
pare it with self-attention models and convolution models on omnidirectional image dataset.
Spherical encoding preserves spatial information on the sphere, and can be easily adapted
to both convolution and self-attention schemes in deep learning models. Experiments
show that both conventional convolution and self-attention models benefit from spherical
encoding on classification tasks. For deeper models, spherical encoding can be integrated

with residual module, leading to state-of-the-art performance.

As future work, we will further adapt spherical encoding to various other deep learn-
ing models as well as omnidirectional image related tasks. We will also explore spherical
encoding defined over self-defined distances other than the great circle distance discussed

in this work.
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