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摘要

本篇基於編碼機制，以編碼的方式改變作用於平面影像的卷積核中的權重，

使卷積在全景影像的特徵提取上能有較佳的表現，並且可以與現存的卷積類神經

網路模塊兼容。

實驗結果以全景圖片分類的準卻度呈現了此編碼機制和卷積類神經網路及

殘差模塊的相容性，並以 omniMNIST, omniCIFAR10, omniCIFAR100進行實驗，

在準確度上得到目前最佳的結果。

關鍵字 全景影像、卷積、編碼機制
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Abstract

An encoding mechanism for omnidirectional images is proposed. It extends convo

lution widely used in planar images to omnidirectional images on sphere surface. Unlike

other convolution kernels, the proposed mechanism gives an addon solution to be adapted

in the existing neural network architectures to process omnidirectional images. Experi

mental results on convolution neural network (CNNs) and residual nets demonstrate the

effectiveness of the proposed mechanism, achieving stateoftheart performance in omni

MNIST, omniCIFAR10, and omniCIFAR100 datasets.

Keywords: Omnidirectional, Encoding, Convolution
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Chapter 1 Introduction

Omnidirectional image gives a panoramic representation of physical spaces when

compared to regular 2D images. It enables significant applications such as Google Street

View, virtual tours of real estate, 360◦ showcase of automobile, and virtualreality expe

rience. Nowadays, omnidirectional image can be acquired by either consumer electronics

such as smartphones or 360◦ cameras, or professional devices such as 3D scanner[20] or

DSLR cameras with a rotator.

Spherical signals are often represented as a variety of data types, such as image

grid[12], point clouds[23], or voxels[21][26]. Equirectangular projection is perhaps the

most prevailing way to project various spherical signals onto the 2D space. Equirectan

gular projection is used extensively in image capturing, while most of the omnidirectional

image datasets are composed of equirectangular projected images.

Equirectangular projection maps the longitude and latitude coordinates of the spher

ical image to the x and ycoordinates of a plane image, respectively. This, however, is

often accompanied with undesired distortions around the north and south poles, as well as

discontinuity on the two sides (see fig. 4.1). As a result, special care must be taken before

applying conventional euclideanbased learning algorithms [3] to equirectangular images

projected from spherical signals.

1
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Figure 1.1: Distortion near poles (red part), discontinuity on two sides (blue part), and
normal grid near equator (yellow part)

To deal with the distortion and discontinuity issues as mentioned above, multiple

learning schemes were proposed such as Spherical CNN[3] and SphereNet[6]. In spheri

cal CNN, the mathematical framework of rotationinvariant convolution on SO(3) is de

rived and analyzed. By regarding the unit sphere S2 as the quotient map SO(3)/SO(2), a

spherical signal can be extended to a function on SO(3), on which spherical CNN can be

applied. However, it is still not clear how the spherical CNN framework can be applied

to other prevailing modules beyond convolutions. Furthermore, since the convolution

is performed on the threedimensional SO(3) manifold instead of the conventional two

dimensional S2 manifold, the memory usage becomes a dire burden.[1]

SphereNet kernel[4] retains the receptive field on the tangent plane and computes

the offset of the sampling locations of the convolution filters based on gnomonic projec

tion. The reprojection local region addresses the heavy distortion issue of patterns near

the North and South poles and the uniform sphere sampling addresses the issue of over

weighting on highlatitude regions. However, the inconsistency of physical meaning the

extracted feature and the equirectangular projected image makes the kernel incompatible

to residual modules. (see Sec. 4.3 for more details)

In this work, we propose a spherical encoding to improve the performance of convo

lution neural network on omnidirectional data. The contributions are listed as below:

• We propose a spherical encoding based on great circle distance to calibrate the con

2
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volution weights on distorted regions at highlatitudes.

• The proposed spherical encoding is compatible to prevailing deep learning modules

such as residual module, with its effectiveness supported by experimental results on

omnidirectional image classification tasks.

• We give a physical interpretation of each pixel computed from different kinds of

convolution on equirectangular projected images in the aspect of receptive fields.

3
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Chapter 2 Related Work

Many convolutionbased models have been proposed for image processing tasks due

to the great success of convolution neural network (CNN). However, conventional con

volution is originally designed for planar images, which may not be ideal for spherical

images where distortion and discontinuity issues must be reckoned with (see fig. 4.1).

2.1 CNNs Based on Different Projections

An intuitive solution to solve the distortion problem in equirectangular projected im

age is to refine the distorted areas through multiple perspective projections. Lai et al. [17]

conduct a segmentation task through cube map projection, which relieves the distortion

near the poles by the top/bottom/left/right/front/back views of the sphere.

To deal with the discontinuity issue in equirectangular projected image, Yang et al.

[27] conduct object detection task on panoramic images using multiangle projection. In

this approach, the omnidirectional image is represented by multiple overlapping 2D im

ages obtained by reprojecting the equirectangular image from multiple angles among the

equator. The overlapping images ensures each point on the sphere will have a neighbor

hood that lies within at least one projected image, that is, the points of discontinuity that

correspond to the edge of any projected image lie within the continuity region of some

5
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other projected image. As such the discontinuity issue is deal with. However, since mul

tiple projected images are required to represent an omnidirectional image, the multiangle

projection requires lots of repeating calculation on each of the multiple projected images

in both training and testing phases.

2.2 Spherical CNNs

Instead of processing the projected spherical signals on a plane, another approach is

to reconstruct the signals on a sphere in essence. Just as the 2D convolution has the shift

invariance property, it is desirable that the convolution on the spherical signals should be

rotationinvariant.

Towards this end, in Spherical CNN[3] a rotation invariant convolution on spherical

signals was proposed. As an extension, Cohen et al. further proposed guage equivari

ant convolutional networks[14] for signals on arbitrary manifolds, as well as Icosahedral

CNN[2] which is a special case of gauge equivariant convolutional network on spherical

signals in the form of icosahedral grids. In gauge equivariant convolution, the feature

vectors of neighboring pixels in the receptive field are first transformed to a common lo

cal chart through parallel transport[25], at which the convolution is taken as a weighted

sum of the corresponding transformed features. This allows for geometric features to be

processed in an equivariant manner independent of the particular gauge selection.

In Esteves et al.’s work [9], the spherical convolution is computed through spherical

fourier transform. That is, the spherical Fourier coefficients of the convoluted signal is

computed as the product of the spherical Fourier coefficients of the original signal and the

filter.

6
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Although the mathematical theory for rotationinvariant convolution is well estab

lished, it either poses major computational overhead or significant constraints that the

model should be linear [15], hindering its application to deep convolution modules.

2.3 Selfdefined Representations and Kernels

There are various representations to a spherical signal, and for each representation

various selfdefined kernels were proposed to handle the distortion and discontinuity is

sues. Coor et al. [4] and Fernandez et al. [10] used equirectangular projected images as

input, where the sampling locations of the convolution filters were adapted based on the

geometry of the spherical image representation.

Dai et al. [6] handled the issue of distorted features by using deformable kernels.

The additional parameters, x, yoffsets, are trained along with the weights of convolution

kernels, and deformable kernels can selfadjust the receptive fields by moving the position

of input pixels through offsets.

Lee et al. [19] addressed the distortion issue through icosahedron representation of

spherical signals, where each pixel is a subdivision surface on the icosahedron mesh. To

deal with the discontinuity issue, an extra table storing the adjacency information between

pixels is maintained for computing convolution and pooling.

In Chao et al.’s work [29], the spherical signal is represented as triangular grids

through subdivision on icosahedron, and each triangular grid is further represented by

regular square grids while dealing the discontinuity issue through padding. A 3× 3 con

volution kernel pretrainable from plain images was then proposed as an arcbased inter

polation of the neighboring square grids to mimic convolution on icosahedron, which is a

7
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weighted sum of six neighboring triangular facets of a vertex.

Spherical signals can be sampled more properly on selfdefined representations than

on planar images. However, the transformation of each selfdefined representation re

quires extra computational cost, and the kernels can not adapt to CNNs originally designed

for images with square grids.

8
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Chapter 3 Method

We consider an equirectangular image by two parts: i) the position of a pixel is re

garded as positional information, and ii) the context and the value of channels are regarded

as features. In equirectangular projection:

f(λ, ϕ) = (R(λ− λ0), R(ϕ− ϕ0)). (3.1)

Here, R is the radius of the globe, (λ,ϕ) is the longitude and latitude of the location

to project, (λ0,ϕ0) is the central parallel and the meridian of the map, and (x, y) is the

coordinate on the equirectangular projected image. If we acquire the coordinate of input

pixel we can have the positional information of pixel from eq. 3.1.

Coming up with the positional encoding in selfattention mechanism, we introduce

the relationship between convolution and selfattention in sec. 3.1 and positional encoding

in sec. 3.2. We propose our structure in sec. 3.5.

9
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3.1 Convolution and SelfAttention on Feature Extrac

tion

In 2D convolution the pixel value on position (i, j) is evaluated as:

f(i,j)=
∑

∆W∈{−$K
2 %...$K

2 %}
∆H∈{−$K

2 %...$K
2 %}

F(∆W ,∆H)·I(i+∆W ,j+∆H). (3.2)

Here F∈RK×K×Din is the weights of the convolution filter, K is the size of the filter,

and I∈RW×H×Din is the input image of size W×H and Din channels. I(i,j)∈RDin is the

channel values of the pixel on position (i,j). Note that convolution is a shiftinvariant

operation, which is not the case for equirectangular projected images. For instance, shift

ing an object from the equator to the North or South pole on sphere leads to not only a

shift in the equirectangular projected image, but also a distortion that depends on latitude.

Therefore, a positiondependent filter is needed in panoramic image processing.

Another useful method is selfattention mechanism for computer vision. Let I∈

RWH×Din be the flattened image. In selfattention, the output of a query pixel q is com

puted as the weighted sum of every key pixel with the weight of attention probabilities,

where the attention probabilities measures the similarity between the query pixel and a

key pixel as follows:

SelfAttention(I)q=
WH∑

k

softmax(Aq,:)kIk,:Wval

softmax(Aq,:)k=
exp(Aq,k)∑
pexp(Aq,p)

.

(3.3)

Here, Wval∈RDin×Dout linearly transforms the input image I from Din channels to Dout

10
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channels, A∈RWH×WH denotes the pairwise attention score between each pixel in the

image I , and softmax(Aq,:)k is the attention probabilities on pixel q contributed by pixel

k. The attention score between pixel q and pixel k is commonly calculated in an inner

product form:

A=(IWqry)(IWkey)
T=IWqryW

T
keyI

T . (3.4)

Here,Wqry,Wkey∈RDin×Dout linearly transform each pixel from RDin to RDout , on which

the inner product is computed as attention score between pixels. In selfattention mecha

nism, we can use positional encoding to preserve the positional information of each pixel.

A=(I+E)WqryW
T
key(I+E)T , (3.5)

whereE∈RWH×Din is the positional encoding of the pixels. (see Sec. 3.2 for more details)

It has been pointed out by Cordonnier et al. [5] that the convolution layer can in fact

be realized through multihead selfattention mechanism, where the position information

of each key pixel is taken into account through positional encoding. In this work, we

extend the idea of realizing the convolution operation through selfattention mechanism to

omnidirectional images. Moreover, we propose Spherical Encoding for equirectangular

projected image to preserve positional information of each pixel based on the great circle

distance. We will further elaborate spherical encoding in sec. 3.2.

3.2 Encoding with Positional Information

There are several ways of positional encoding to preserve the positional information

of pixels, including absolute and relative encoding [7]. In absolute encoding, each pixel p

11
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is represented by a fixed or learned vectorEabs
p ∈RDin , by which the positional information

between a pair of pixels is represented by the dot product between their encoding vectors.

More precisely, the attention score between query pixel and key pixel is computed as:

Aabs
(q,k)=(Iq+Eabs

q )WqryW
T
key(Ik+Eabs

k )T

=IqWqryW
T
keyI

T
k +Eabs

q WqryW
T
keyI

T
k +IqWqryW

T
keyE

absT
k +Eabs

q WqryW
T
keyE

absT
k ,

(3.6)

where Iq∈RDin is the qth pixel in teh flattened image I .

On the contrary, in relative encoding, it is the relative position between the key and

query pixel q,k∈[1,W−1]×[0,H−1] that is considered, by which the attention score is

computed as:

Arel
k−q=(Iq+e)WqryW

T
key(Ik+Erel

k−q)
T

=IqWqryW
T
keyI

T
k +IqWqry(W

T
keyE

relT
k−q )+(eWqry)W

T
keyI

T
k +(eWqry)(W

T
keyE

relT
k−q )

=IqWqryW
T
keyI

T
k +IqWqryW

T
keyE

relT
k−q+uW T

keyI
T
k +vW T

keyE
relT
k−q ,

(3.7)

where Erel
k−q∈RDin is the relative encoding vector that depends on the relative position

between the key and query pixels, and e∈RDin is a learned or fixed vector.

3.3 Spherical absolute encoding

In order to contain the spherical topological information, we propose Spherical En

coding based on the great circle distance. For two point (λ1,ϕ1), (λ2,ϕ2) on the unit sphere

12
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in spherical coordinate, the angle in between can be written as:

d((λ1,ϕ1),(λ2,ϕ2))=arccos((cosλ1cosϕ1,sinλ1cosϕ1,sinϕ1)·(cosλ2cosϕ2,sinλ2cosϕ2,sinϕ2))

=arccos(sinϕ1sinϕ2+cosϕ1cosϕ2cosλ1cosλ2+cosϕ1cosϕ2sinλ1sinλ2).

(3.8)

Here, the arccosine function can be approximated by the Taylor series expansion:

d((λ1,ϕ1),(λ2,ϕ2))=
π

2
−

∞∑

k=0

1

22k
(2k)!

(k!)2
1

2k+1
(sinϕ1sinϕ2+cosϕ1cosϕ2cosλ1cosλ2+cosϕ1cosϕ2sinλ1sinλ2)

2k+1

∼π

2
−Ψn(λ1,ϕ1)·Ψn(λ2,ϕ2),

(3.9)

Where Ψn(λ,ϕ) is the spherical encoding that corresponds to the nth order Taylor series

approximation, which is a
∑n

k=0

(
2k+3
2

)
= 2

3n
3+ 7

2n
2+ 35

6 n+3 dimensional vector where

each element (indexed by k,p,q,r where 0≤k≤n, 0≤p,q,r, and p+q+r=2k+1) takes the

form:

[Ψn(λ,ϕ)]k,p,q,r=
1

2k
(2k)!

k!

√
1

p!q!r!
sinpϕcosq+rϕcosqλsinrλ, (3.10)

Though Taylor expansion has infinite terms, as convolution usually operates on lo

cal patterns, the low order terms are fairly enough to elaborate positional information of

adjacent pixels appropriately. The first order spherical encoding is given by Ψ0(λ,ϕ)=

(sinϕ,cosϕcosλ,cosϕsinλ).

3.4 Spherical relative encoding

By rewriting eq.3.9 with (ϕ1, λ1) and (ϕ2, λ2) replaced by (ϕ,λ) and (ϕ+∆ϕ,λ+

∆λ), respectively, we can express the great circle distance in terms of spherical relative

13
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encoding as follows:

d((λ1,ϕ1),(λ2,ϕ2))

=
π

2
−

∞∑

k=0

1

22k
(2k)!

(k!)2
1

2k+1
(sinϕ1sinϕ2+cosϕ1cosϕ2cosλ1cosλ2+cosϕ1cosϕ2sinλ1sinλ2)

2k+1

=
π

2
−

∞∑

k=0

1

22k
(2k)!

(k!)2
1

2k+1

(
sin2ϕcos∆ϕ+sinϕcosϕsin∆ϕ+cos2ϕcos∆ϕcos∆λ−cosϕsinϕsin∆ϕcos∆λ

)2k+1

≈π

2
−Φ(qry)

n (ϕ,λ)TΦ(key)
n (∆ϕ,∆λ)

(3.11)

Here Φ(qry)
n (ϕ,λ) and Φ(key)

n (∆ϕ,∆λ) are the query/key encodings that correspond to the

nth order Taylor series approximation, respectively. The query encoding Φ(qry)
n (ϕ,λ) is

a 1
3k

4+ 8
3k

3+ 23
3 k

2+ 28
3 k+4 dimensional vector, with each element (indexed by k,p,q,r,s

where 0≤k≤n, p,q,r,s≥0, and p+q+r+s=2k+1) taking the form

[
Φ(qry)

n (ϕ,λ)
]
k,p,q,r,s

=
1

2k
(2k)!

k!

√
1

p!q!r!s!
(−1)ssin2p+q+sϕ cosq+2r+sϕ.

The key encoding has the same dimension with elements taking the form

[
Φ(key)

n (∆ϕ,∆λ)
]
k,p,q,r,s

=
1

2k
(2k)!

k!

√
1

p!q!r!s!
cosp+r∆ϕsinq+s∆ϕcosr+s∆λ

In particular, for first order approximation the query and key encodings are given by

Φ(query)
0 (ϕ,λ)=(sin2ϕ,sinϕcosϕ,cos2ϕ,−sinϕcosϕ)

Φ(key)
0 (∆ϕ,∆λ)=(cos∆ϕ,sin∆ϕ,cos∆ϕcos∆λ,sin∆ϕcos∆λ)

Spherical relative encoding allows the proximity information between query and key pix

els on the sphere to be represented as two integral parts in equirectangular format: the

query encoding that only depends on the location of the query pixel (ϕ,λ), and the key

encoding that solely depends on the relative position (∆ϕ,∆λ). This allows us to effec
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tively adjust the attention scores for pixels in the receptive field of equirectangular format

based on its proximity on the sphere.

3.5 Encoding and Convolution

Though selfattention model hits a great success on various computer vision[24][30]

and natural language processing[8] applications, its dire memory usage poses a serious

issue to be reckoned with. More precisely, for an input image of size W×H and Din∈

O(WH) channels, the selfattention operation requiresO(W 2H2)memory usage, a WH
Din+Dout



fold increase compared to the convolutionbased approach which requires O(WH(Din+

Dout)) memory usage.

To relieve the hugememory usage of selfattention, a common approach is convolution

based attention[28][22] which uses additional parameters and incorporates techniques

such as spatial attention or channel attention to learn the importance of features. This

leads to memory usage in the order ofO(WH×(Din+Dout)), for whichDin andDout are

usually much smaller thanWH .

Instead of using additional parameters, here we use the inner product of spherical

encoding as the attention map to refine the convolution features:

f ∗(i,j)∼
∑

∆W∈{−$K
2 %...$K

2 %}
∆H∈{−$K

2 %...$K
2 %}

ed((λi,ϕj),(λi+∆W
,ϕj+∆H

))

∑
∆′

W∈{−$K
2 %...$K

2 %}
∆′

H∈{−$K
2 %...$K

2 %}

e
d((λi,ϕj),(λi+∆′

W
,ϕj+∆′

H
))
F(∆W ,∆H)·I(i+∆W ,j+∆H)

=
∑

∆W∈{−$K
2 %...$K

2 %}
∆H∈{−$K

2 %...$K
2 %}

e−Ψn(λi,ϕj)·Ψn(λi+∆W
,ϕj+∆H

)

∑
∆′

W∈{−$K
2 %...$K

2 %}
∆′

H∈{−$K
2 %...$K

2 %}

e
−Ψn(λi,ϕj)·Ψn(λi+∆′

W
,ϕj+∆′

H
)
F(∆W ,∆H)·I(i+∆W ,j+∆H),

(3.12)

where (λi,ϕj) is the longitude and latitude of the pixel (i,j) on the equirectangular pro
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jected image.

In equirectangular projected images, pixels near the north and south pole which rep

resent small area on the sphere will be overly weighted in conventional convolution. In

our proposed spherical encoding, however, observe that in the most prevailing 3×3 ker

nel size scenario, the great circle distance between center pixel and highlatitude pixels are

generally smaller than that of lowlatitude pixels(fig. 3.1). This generally leads to smaller

weights assigned to highlatitude pixels and mitigates the issue of overly weighted high

latitude pixels suffered in conventional convolution on equirectangular projected images.

Similarly, the discontinuity of two sides of the image can also be fixed by the sinϕ term

in the spherical encoding.

Figure 3.1: In the 3×3 kernel size setting, the pixels which are further away from the
center (blue) represent greater surface area, and is assigned more attention score through
Spherical encoding. (eq. 3.12)

Figure 3.2: Process of Spherical encoding (eq. 3.12). Input can be either omnidirectional
images or feature maps from previous layers.
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Chapter 4 Experiment

4.1 Dataset

Omnidirectional MNIST is proposed by Coors et al.[4]. The raw MNIST[18] image

is placed on tangent planes randomly drawn from the sphere, and the equirectangular pro

jection of the scene is rendered at a resolution of 60 x 60. Similar method can be applied

to generate the omnidirectional datasets omniCIFAR from CIFAR10 and CIFAR100[16].

Figure 4.1: Omnidirectional dataset includes images with severe distortion around the
North and South poles and discontinuity on the left and right sides.

4.2 Classification on omniMNIST

Due to a variety of representations of spherical signals, we conduct the experiments

on the proposed spherical encoding as well as a variety of baselines mentioned in [4]. Here

S2CNN[3] is a convolution architecture defined in the SO(3) group; GCNN[13] takes a

spherical signal as a weighted graph and the weights of the edges are given from great
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circle distance; SpherePHD[19] represents the spherical signals on icosahedral mesh, and

proposes convolution and pooling under this representation.

4.2.1 Experiment Setup

We followed the experiment setup in [4], and used omniMNIST as benchmark to

compare the feature extraction methods. The backbone network is composed of two con

volution layers and maxpooling, followed by a fullyconnected layer with 10 outputs.

The first convolution layer has 32 filters with kernel size 3×3, and the second convolu

tion layer has 64 filters with kernel size 3×3. Each convolution layer is followed by a

ReLU activation function, and the fully connected layer is followed by a softmax func

tion. For multilayered model, we added more convolution layers with 64 filters, where

the results are reported in Table 4.2.

Method Input Type Accuracy

Conventional Convolution Cubemap Image 0.8997
Conventional Convolution Equirectangular Image 0.9039
SpherePHD [19] Octahedral Representations 0.8813
S2CNN[3] SO(3) signal 0.8814
GCNN[13] Graph 0.8279
SphereNet[4] Equirectangular Image 0.9402
Spherical Encoding (ours) Equirectangular Image 0.9322

Table 4.1: Classification accuracy comparison of the proposed spherical encoding and
various baselines on omniMNIST.

Accuracy
Convolution 2 layer 3 layer 4 layer 5 layer ResNet18

SphereNet 0.9402 0.9718 0.9740 0.9743 0.9910
Spherical Encoding (ours) 0.9322 0.9513 0.9666 0.9720 0.9915

Table 4.2: Classification accuracy on multilayered models of various depths on omni
MNIST.
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4.2.2 Results

Table 4.1 compares the accuracy performance of the proposed spherical encoding

and various baselines on omniMNIST. It follows that the proposed spherical encoding

has better ability to extract spherical features on equirectangular projected images and

outperforms conventional convolution.

Though the proposed spherical encoding slightly falls behind SphereNet on the shal

low twolayer CNN backbone, our method can be easily adopted to deeper models. Ta

ble. 4.2 shows that the proposed spherical encoding is capable of adapting to various

existing deep learning model and the nowadays widely adopted residual modules such as

ResNet18[11], achieving the stateoftheart performance on omniMNIST classification

task.

4.3 Residual Module

Residual module has become a common architecture design for deep learning which

often makes deep network structure more easily to optimize, and achieves better perfor

mance[11]. To elaborate the adaptability of the proposed spherical encoding in deeper

models with residual modules, we conduct experiments on classification task over omni

directional datasets, and demonstrate the ability of feature extraction in terms of classifi

cation accuracy.
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4.3.1 Experiment Setup

The Resnet18 (fig. 4.2) is taken as the backbone where the convolution unit is re

placed by (a) conventional convolution, (b) SphereNet convolution, and (c) spherical en

coding with convolution (our method). Note that in the experiement of SphereNet con

volution, the pooling functions are substituted by the spherical pooling in their own work

[4], for the purpose of addressing the issue of oversampling on high latitude regions.

Figure 4.2: The Resnet18 backbone.

Convolution Dataset Accuracy

Conventional Convolution omniCIFAR10 0.8339
SphereNet Convolution omniCIFAR10 0.8346
Spherical Encoding(ours) omniCIFAR10 0.8461

Conventional Convolution omniCIFAR100 0.6020
SphereNet Convolution omniCIFAR100 0.5979
Spherical Encoding(ours) omniCIFAR100 0.6413

Table 4.3: Comparison of various convolution/encoding schemes on ResNet18.

4.3.2 Result

As demonstrated in Table. 4.3, the proposed spherical encoding yields the best re

sults. It is also observed that SphereNet convolution performs slightly worse than conven

tional convolution in the omniCIFAR100 classificaiton task. This indicates that SphereNet
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convolution does not benefit from the residual structures. Here we give an intuitive ex

planation as follows (as shown in Table.4.4):

As illustrated in fig. 4.3, in SphereNet convolution the distortion issue is dealt with by

maintaining the size of receptive field on the tangent plane, with the output representing

the convolution of spherical data on the tangent plane. This leads to a receptive field

whose size depends on the latitude in the equirectangular format. As in residue module the

convolution result is added to the original input in equirectangular format, we hypothesize

that the latitudevarying receptive field in the equirectangular format causes inconsistency

in the addition operation in residual modules.

In contrast to SphereNet, in our method the size of receptive field remains identical in

the equirectangular format, regardless of the latitude. That is, the convolution is computed

as a weighted sum of samples drawn from a surface region whose latitude and longitude

spans K∆ϕ and K∆λ, respectively. Here K denotes the kernel size, while ∆ϕ and ∆λ

denotes the latitude and longitude spans of the surface region that a pixel in equirectangular

format represents, respectively. The distortion issue is instead dealt with through spherical

encoding, where pixels near the North and South poles will be assigned smaller weights

computed as the dot product of spherical encoding, which is consistent to the intuition

that high latitude pixels in equirectangular format represents smaller surface regions on

the sphere.

4.4 SelfAttention Model

We followed the experiment setup in [5] and [24] to demonstrate the effect of various

encoding schemes, where conventional convolution and fully selfattention based models
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operation input physical meaning
Conventional
Convolution convolution adjacent pixels weighted sum in local region

SphereNet
Convolution[4] convolution pixels calculated from

gnomonic projection weighted sum on tangent plane

Spherical
Encoding (ours)

convolution with
weight from encoding adjacent pixels

weighted sum in local region
with smaller weight

for higher latitude pixels (eq. 3.9)
Table 4.4: Comparison between spherical encoding, convolution, and SphereNet

Figure 4.3: The physical meaning of pixel on equirectangular projection and on SphereNet
kernel. (a) The pixel on the actual sphere surface by equirectangular projection (b) The
receptive field of SphereNet kernel.

are compared over omnidirectional image datasets. We use the aforementioned Resnet18

as the backbone, and replaced the convolution layers with selfattention layers incorpo

rated with various encoding schemes, as illustrated in Table. 4.5 and 4.6.

4.4.1 Result

As illustrated in Table. 4.5 and 4.6, the fully selfattention model with either absolute

or relative encoding does not perform as good as conventional convolutions for spherical

data. For fully selfattention models, the proposed absolute spherical encoding yields bet
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OmniCIFAR10
Feature extractor Encoding Accuracy

Conventional Convolution  0.8339
SelfAttention absolute encoding 0.8005
SelfAttention relative encoding 0.8178
SelfAttention spherical encoding (abs 0th order) 0.8230
SelfAttention spherical encoding (rel 0th order) 0.8000
Conventional Convolution spherical encoding (abs 0th order) 0.8461
Conventional Convolution spherical encoding (abs 1st order) 0.8511
Conventional Convolution spherical encoding (abs 2nd order) 0.8369
Conventional Convolution spherical encoding (rel 0th order) 0.8331
Conventional Convolution spherical encoding (rel 1st order) 0.8389

Table 4.5: results for different encodings on omnicifar10

OmniCIFAR100
Feature extractor Encoding Accuracy

Conventional Convolution  0.6020
SelfAttention absolute encoding 0.5747
SelfAttention relative encoding 0.5856
SelfAttention spherical encoding (abs 0th order) 0.5912
SelfAttention spherical encoding (rel 0th order) 0.5815
Conventional Convolution spherical encoding (abs 0th order) 0.6404
Conventional Convolution spherical encoding (abs 1st order) 0.6413
Conventional Convolution spherical encoding (abs 2nd order) 0.6228
Conventional Convolution spherical encoding (rel 0th order) 0.6186
Conventional Convolution spherical encoding (rel 1st order) 0.6246
Table 4.6: Comparison of various encoding schemes on omnicifar100

ter result over traditional absolute and relative encoding. The conventional convolution

also benefits from absolute spherical encoding. The relationship between the surface area

where each pixel stands and the great circle distance between pixels is datadriven. The

order of approximation can be used as a hyperparameter in the training phase, and further

improvements can be achieved by tuning the order of approximation in spherical encod

ing.
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Chapter 5 Conclusion

In this work, we propose Spherical Encoding for omnidirectional images, and com

pare it with selfattentionmodels and convolutionmodels on omnidirectional image dataset.

Spherical encoding preserves spatial information on the sphere, and can be easily adapted

to both convolution and selfattention schemes in deep learning models. Experiments

show that both conventional convolution and selfattention models benefit from spherical

encoding on classification tasks. For deeper models, spherical encoding can be integrated

with residual module, leading to stateoftheart performance.

As future work, we will further adapt spherical encoding to various other deep learn

ing models as well as omnidirectional image related tasks. We will also explore spherical

encoding defined over selfdefined distances other than the great circle distance discussed

in this work.
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