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Abstract — Excessive power supply noise (PSN), such as IR 
drop, can cause timing violation in VLSI chips.  However, 
simulation PSN takes a very long time, especially when 
multiple iterations are needed in IR drop signoff.  In this 
work, we propose a machine learning technique to build an IR 
drop prediction model based on circuits before ECO (engineer 
change order) revision.  After revision, we can re-use this 
model to predict the IR drop of the revised circuit.  Because 
the previous circuit(s) and the revised circuit are very similar, 
the model can be applied with small error.  We proposed 
seven feature extractions, which are simple and scalable for 
large designs.  Our experiment results show that prediction 
accuracy (average error 3.7mV) and correlation (0.55) are 
very high for a three million-gate real design.  The run time 
speedup is up to 30X.  The proposed method is very useful 
for designers to save the simulation time when fixing the IR 
drop problem. 

 
Keywords — power supply noise, IR drop analyzer, machine 

learning 

I. INTRODUCTION 
Power supply noise (PSN) has become an important 

concern for VLSI system design and test [1, 2].  Excessive 
PSN degrades circuit performance, which even leads to 
timing failure [3, 4].  It is a well-known problem that 
excessive PSN can induce significant yield loss (overkill) 
[5, 6, 7].  PSN include IR drop and Ldi/dt noise.  Since 
IR drop is more significant than the Ldi/dt noise for on-chip 
power integrity analysis, this paper will focus on the IR 
drop effect only. 

Traditional dynamic IR drop analyzer solves large 
linear equation systems to obtain the IR drop of every node 
in the circuit, and then simulate critical paths to verify if 
there is any IR drop violation [8].  However, this process 
is very slow, especially when multiple iterations are needed 
in IR drop signoff.  For an industry scale design (~3M 
gate count), IR drop analysis can take up to one day.  
Every time a minor revision is made, the whole process has 
to be repeated, even if the revised circuit just changed a 
small number of cells. 

It has been shown that machine learning prediction of 
circuit speedpath [9] and timing signoff [10] is feasible.   
Recently, Ye et al.[11] developed an SVM-based 
regression method to predict circuit delay at runtime 

without PSN consideration.  However, it has been shown 
that IR drop analysis is inaccurate if PSN is ignored [12].  
Unfortunately, realistic large circuits are difficult for 
machine learning since the dimension is very large.  
Power-aware dynamic IR drop prediction of cells can be 
found in [13].  They used linear model to predict the IR 
drop of cells.  However, the prediction rule is based on 
designer’s experience, which cannot be generalized and 
automated.  So far, there is still no good machine learning 
technique available to predict PSN for large circuits. 

Fig. 1 shows the traditional flow of IR drop analysis.  
After each circuit revision, we need to rerun the IR drop 
analyzer to make sure there is no violation.  The source of 
patterns can be either functional patterns or test patterns.  
Because real design process needs many revisions, repeated 
IR-drop analysis during each iteration can be very time 
consuming.  

  
Fig. 1.  Traditional IR drop analysis flow 

In this work, we propose to use machine learning to 
build an IR drop prediction model for the circuit(s) before 
revision.  After a circuit revision, we can re-use this model 
to predict the IR drop of the revised circuit.  After the 
predicted IR drop meets our specification, we need to rerun 
the dynamic IR drop analyzer again to make sure there is 
indeed no violation before the final signoff.  This work 
has three major contributions.  We take advantage of the 
similarity between the original circuit and the revised 
circuit to learn a model to speed up the signoff process so 
very few dynamic IR drop analyses are needed.  This new 
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flow saved a lot of iterative simulation time during revision.  
Second, we propose to sample a small portion of cells to 
predict IR drop of all cells.  This greatly reduces the size 
of input data so that machine learning of realistic industrial 
design is feasible.  Third, we propose seven simple but 
important feature extraction methods to greatly reduce the 
dimension, so the proposal is scalable for large designs.  
Our experiment results on a three million-gate GPU show 
that average error of prediction IR drop is 3.7mV and 
correlation is 0.55.  The run time speedup is up to 30X 
compared to a commercial tool Ansys RedHawk.  The 
proposed method is very useful for designers to save the 
simulation time during ECO to fix IR drop problems. 

The rest of this paper is organized as follows.  Section 
II provides previous research papers in PSN-aware IR 
analysis.  Section III presents the proposed machine 
learning technique.  Section IV shows experimental 
results on benchmark circuits.  Finally, Section V 
concludes this paper. 

II. PAST RESEARCH  

A. Statistical IR drop Prediction 

Many different metrics have been proposed as 
alternatives to IR drop, such as weighted switching activity 
(WSA) [14, 15], switching cycle average power (SCAP) 
[16], flip-flop toggle count (FFTC) [17], and etc.  
Although some metrics show good correlations with actual 
IR drop values, there is no known model to translate the 
proposed metrics to the actual IR drop values.  It is not 
clear what is the pass/fail threshold for these metrics.  
Therefore, it is impossible to use these alternative metrics 
to sign off a design.  A recent paper used a linear model to 
predict the IR drop values [13].  For each cell, they 
calculated a linear model to predict the IR drop based on 
the power consumption.  The problem of the linear model 
is that it may not be good enough for complex designs.  In 
addition, it is computationally expensive to calibrate a 
linear model for each cell in large designs.  A paper tried 
to identify high power area (hot-spot) using switching 
probability and logic level [18].  Although we see a 
correlation between real hot-spot and the predicted area, it 
is still not clear what is the pass/fail threshold for design 
sign off.   

B. Machine Learning IR drop Prediction 

Machine learning has been applied to identify 
speedpath outliers [9].  Various feature extractions have 
been performed based on topology, dynamic effects, static 
effects, statistical effects, and random effects.  
Nevertheless, it did not consider IR drop effects.  Support 
vector machine has been applied to predict IR drop [11].  
This technique was implemented on FPGA to dynamically 
adjust the CPU operation frequency.  Their technique used 
only input patterns, no feature extraction, to predict IR drop.  
The number of dimensions is very large and therefore it is 
not scalable for large designs.  Another previous work is 
IR-drop-aware timing prediction using machine learning 

[19].  This work proposed feature extraction so it is 
scalable for large designs.  However, it did not consider 
the ECO revision issue.  Every time a new revision is 
made, a new model is needed.      

C. Dynamic IR drop Analyzer 

Our proposed machine learning technique can be 
applied to speed up any circuit IR drop analyzer.  In this 
paper, we use a PSN-aware dynamic IR drop analyzer, 
IDEA (IR drop-aware Efficient timing Analyzer) as our 
benchmark simulator [12].  This technique is very scalable 
because they model the voltage-delay characteristic 
function in a simple analytical function, which just require 
limited simulation of library cells.  Experimental results 
showed that, for small circuits, the error is less than 5% 
compared with HSPICE.  Although IDEA is up to 272 
times faster than a commercial tool, NANOSIM, it still 
takes days to simulate million-gate designs.   

III. PROPOSED TECHNIQUE  

A. Proposed Flow 

Fig. 2 shows the proposed flow of our work.  During 
the design phase, we have several ECO-revised circuits, 
including previous versions (…, En-2, En-1) and the current 

version (En).  Suppose that we have performed dynamic 
IR drop analysis on previous versions, using dynamic IR 
drop analyzer, such as Ansys Redhawk[8].  We can then 
extract important features from a small number of sampled 

cells.  After that, we run a machine learning to build a 
model for this circuit so we can re-use this model to predict 
IR drop of the current version (En).  Designers can use our 
prediction results to quickly evaluate whether IR drop of 
the current version meets the specification or not.  Our 
machine learning prediction can save a lot of IR drop 
analysis runtime during iterations.  Finally, when the 
predicted IR drop all meet our specification, we need to run 
the dynamic IR drop analyzer again to make sure there is 
indeed no violation before the final signoff.  Compare Fig. 
2 with Fig. 1, we can save simulation time during the 
prediction phase.  

 
Fig. 2.  Proposed IR Drop Prediction flow 
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B. Cell Sampling and Feature Extraction 

Because there are many cells in a real design, it is 
impractical to use all cells to build a machine learning 
model.  In this research, we propose to sample a portion of 
cells to build a model.  Two factors should be considered 
when we take samples: (1) physical location and (2) IR 
drop values.  For (1), we divide the chip layout into M x N 
windows.  Based on our experience, we take 5% ~ 10% 
sampling cells randomly from each window.  For (2), we 
sort all cells by their IR drops.  We take sampled from 
three categories of cells: serious IR drop, medium IR drop 
cells, and low IR drop.    

Table I shows the features we consider in this work.  
Given a sampled cell, there are three categories of features.  
Power features of a sampled cell include the power of this 
cell, toggle rate of this cell, and type of this cell.  Physical 

features include this cell location (i.e. X, Y coordination), 
toggle rate of neighbor cells, and neighbor count (number 
of cells in the neighborhood).  Finally, the via feature is 
the distance to via.  Each feature is explained as follows. 

TABLE I.  SEVEN FEATURES OF A SAMPLED CELL 

categories 1 2 3 
Power 
features 

Cell power 
 

Cell  
toggle rate 

Cell type 

Physical 
features 

Cell location Neighbor 
toggle rate  

Neighbor count 

Via feature Distance to via   
Cell power is the power consumption of the sampled 

cell given a set of input patterns.  Cell toggle rate 

measures the switching activity of the sampled cell.  
Toggle rate is defined as the number of toggles over the 
number of clock cycles and it is a number between 0% and 
200%.  The reason for 200% toggle rate is because clock 
buffers toggle twice in each cycle.  Both cell power and 
cell toggle rate are scalar variables that can be obtained by 
a dynamic IR drop analyzer, such as Redhawk.  Cell type 

is the logic gate type of the sampled cell, such as NAND, 
NOR, and etc.  This is a categorical scalar variable, which 
can be obtained from the netlist or the IR drop analysis 
report.   

Fig. 3 shows how to define neighbors for a given 
sampled cell.  We draw a rectangle window, centered at 
the given sampled cell.  The window height and width can 
be adjusted by the user.  Different technology may have 
different setting.  In this work, we increasingly enlarge the 
window size and observed the prediction accuracy under 
different window width and height.  After several 
experiments, our ANN model reached the highest 
prediction accuracy when window height is set to three row 
heights and window width is 50.   

 
Fig. 3.  Neighbors of a sampled cell 

Neighbor toggle rate (NTR) is the toggle rate among all 
neighbor cells.  Because different cell types have different 
impact on IR drop, so we need to count NTR according to 
cell types.  For each cell type, toggle rates of the same cell 
type are summed up.  This feature is a vector, whose 
dimension equals to the number of cell types.   NTR of a 
sampled cell s is shown as the following equation (1). 

ܴܰܶሺݏሻ ൌ ሾσ ܴܶ
௧௬ୀ௧భǡ �אௐ ǥ�ǡ σ ܴܶ

௧௬ୀ௧ಿ�אௐ ሿ     (1) 

, where ܴܶ௧  indicates the toggle rate of the ݇௧ cell of 
type t, and W is the neighbor window of the sample cell s.   

Neighbor count (NC) means the total count of neighbor 
cells.  This feature is a scalar, defined in the following 
equation (2), where ݈݈݁ܥ  is an indicator variable (1 
means the presence of the ݇௧ cell, and 0 otherwise). 

ሻݏሺܥܰ     ൌ σ ௐא�݈݈݁ܥ                          (2) 

Distance to via (D) is the distance to the closest power 
via, and this via must be in the same row as the sampled 
cell.  Fig. 4 shows the definition of D.  The sampled cell 
is in the middle of the window and the red rectangles 
represent power vias.  Number D represents the resistance 
value from the sampled cell to the power network. 

 
Fig. 4  Distance to via 

Totally, we propose seven features of dimension (T+7), 
where T is the total number of cell types used in the design.  
This is a very small dimension and scalable for large 
designs.   

C. Machine Learning Prediction Model 

Artificial neural network (ANN) [20] imitated the 
neural structure of human’s brain.  Figure 5 shows an 
example ANN model with one hidden layer, where ݔ is 
the input features of nth sampled cell, and ݐ is the target 
IR drop value of the nth sampled cell.  w is the weight of 
neurons in ANN and N is the number of training data.  
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Fig. 5  ANN Model (with one hidden layer) 

Our goal is to find a function ݕሺݔǡ  ሻ to minimizeݓ
the following error function, 

ሻݓሺܧ ൌ ଵ
ଶ
σ ԡݕሺݔǡ ሻݓ െ ԡଶேݐ
ୀଵ                (3) 

IV. EXPERIMENTAL RESULTS  

Three ITC’99/IWLS’05 benchmark circuits (b18, b19, 

leon3mp) in 45nm and one real GPU (Graphic Processor 

Unit) in 16nm technology from the industry have been 
evaluated by our proposed method.  Profiles of these four 
circuits are shown in Table II.  The first column shows the 
number of cells.  Given a commercial ATPG test pattern 
set, three ITC/IWLS benchmark circuits have been 
simulated by our own dynamic IR drop simulator, IDEA 
[12].  The second column shows the number of patterns 
simulated.  The max IR drop and the average IR drop of 
the circuit are shown in the third and fourth columns.  
Dynamic IR drop analysis of the GPU was performed by a 
commercial tool, Ansys RedHawk.  All the machine 
learning experiments use the artificial neural network open 
source FANN [21].  The experiments were run on Intel 
Xeon CPU E5520 @ 2.27GH with 32GB RAM.   

TABLE II.  PROFILE OF BENCHMARK CIRCUITS (E1, BEFORE ECO) 

Circuit Cells Patterns VDD 
(V) 

Avg. IR 
drop(mV) 

Max  
IR drop(mV)

b18 64K 50 1.1 29 39
b19 128K 50 1.1 59 83

leon3mp 638K 50 1.1 92 241
GPU 3,006K 240 0.9 25 190

A. IR Drop Prediction before ECO 

We first evaluate the effectiveness of the IR drop 
prediction for the circuit before engineering change order 
(ECO).  Prediction accuracy is measured by Normalized 

root mean square error (NRMSE), which is defined in 
equation (4) and (5).  In these equations, ݕො  is the 
simulated IR drop of the ith sample cell, and ݕ  is the 
predicted IR drop of the ith sample cell.  N is the number 
of data. 

ܧܵܯܴ ൌ �ටσ ൫௬ොି�௬൯
మಿ

సభ
ே

                       (4) 

ܧܵܯܴܰ ൌ ோெௌா
ሺ௬ሻ

כ ͳͲͲΨ                     (5) 

First, we want to know how many samples we need to 
build a model with high prediction accuracy.  In this 
experiment, we sampled a small portion of cells and predict 
IR drop of all cells.  The training data and predicting data 
are from the same design (E1).  There is no ECO-revision 
in this experiment.  The prediction accuracy for three 
benchmark circuits is plotted in Fig. 6.  We observe that 
NRMSE drops quickly when sampling cells increase.  We 
can see that NRMSE remain constant when the percentage 
of sampled cells is more than 10%.  These experiments 
show that 10% sampling is enough for our designs.  
Please note that IR drop is highly design-dependent.  Each 
design has a unique model, even if they are the same 
technology. 

 
Fig. 6.  Prediction accuracy vs. number of samples (before ECO) 

Table III displays prediction results of four benchmark 
circuits.  The machine learning model is trained by data 
from 10% sampled cells of the first edition E1.  Both 
NRMSE and CC are very good.  As shown in the table, 
machine learning can predict IR drop accurately, without 
any ECO-revision, compared to simulation results.  To 
evaluate the ANN technique, we also tried the extra tree 
technique [22].  Results of three benchmark circuits are 
very similar to those of ANN. 

TABLE III.  EXPERIMENT RESULTS (TRAINING=PREDICTION=E1) 

Circuit Feature 
Dimension 

NRMSE 
ANN, Tree 

CC 
ANN, Tree 

b18 42 8.7%, 6.8% 0.94, 0.95 
b19 44 6.6%, 6.1% 0.94, 0.94 

leon3mp 55 3.3%, 4.4% 0.98, 0.98 
GPU 1,201 6.7%, NA 0.78, NA 

Correlation coefficient (CC) is defined in equation (6).  
Smaller NRMSE and bigger CC indicates better results. 

�ܥܥ ൌ �
σ �ݕൣ� െ �݉݁ܽ݊ሺݕሻ൧ே
ୀଵ �ሾݕො� െ �݉݁ܽ݊ሺݕොሻሿ

ටσ �ݕൣ െ �݉݁ܽ݊ሺݕሻ൧
ଶ
�� σ �ොݕൣ െ �݉݁ܽ݊ሺݕොሻ൧

ଶே
ୀଵ

ே
ୀଵ

���ሺሻ 

B. IR Drop Prediction after ECO 

We evaluate the effectiveness of the IR drop prediction 
for circuits after ECO.  First, we use the original circuit as 
edition E1.  Then, we use Cadence SOC Encounter to 
move 13 and 7 serious IR drop cells in benchmark circuits 
b18 and b19, respectively, to produce a new edition E2.  
For benchmark circuit leon3mp, we add one power stripe to 
produce edition E2.   Then we move 32 cells to produce 
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edition E3.  Three editions of GPU are real data from 
MediaTek.  Table IV shows the prediction accuracy of 
four circuits after ECO.  Machine learning model is 
trained by data from 10% sampled cells of the first edition 
(E1).  And then we use the model to predict the second (E2) 
and the third edition circuits (E3).  

TABLE IV.  PREDICTION RESULTS OF FOUR CIRCUITS AFTER ECO 

 E1 E2 E3 

Circuit NRMSE CC NRMSE CC NRMSE CC 

b18 8.7% 0.94 11.2% 0.88 - - 

b19 6.6% 0.94 9.7% 0.93 - - 

leon3mp 3.3% 0.98 6.1% 0.98 7.7% 0.98 

GPU 6.7% 0.78 9.0% 0.59 11.2% 0.61 

We can see from Table IV that our machine learning 
model has the best prediction accuracy when predicting the 
first edition circuit. E1.  As the number of revision 
increases, prediction accuracy becomes worse.  Therefore, 
it is important to train the model using the most recent 
revision.  Table V and Table VI use both previous editions 
(E1 and E2) data to improve the prediction accuracy of the 
third edition (E3).  Table V shows the prediction results of 
randomly sampled 10% cells in E3.  Table VI shows the 
prediction results of top 10% serious IR drop cells in E3.  
With both E1 and E2 data in the training, the prediction 
accuracy is much better than that of using E1 data only 
(Table IV).  Average error is defined in equation (7).  
Max Error is defined in equation (8). 

������������� ൌ � σ ฮ௬ොି�௬ฮಿ
సభ

ே
                     (7) 

��������� ൌ ���൫ݕො െ ൯ݕ� ǡ ݅ ൌ ͳ����ܰ            (8) 

where ݕො and ݕ  are simulated IR drop and predicted IR 
drop of the ith sample cell, respectively.  A positive error 
means under-prediction but a negative error means 
over-prediction.  The average error of leon3mp is 5mV, 
5% of the average IR drop values.  The average error of 
GPU is 3.7mV, which is 15% of the average IR drop values.  
The max error is 40mv, which is about 20% of the worst 
case IR.   

TABLE V.  PREDICTION RESULTS OF E3 CIRCUIT (TRAINED BY E1+E2) 

 E3 

Circuit NRMSE CC Avg. Error 
leon3mp 3.4% 0.98 3.8mV 
GPU 6.8% 0.81 3.3mV 

TABLE VI.  PREDICTION OF TOP 10% SERIOUS IR DROP CELLS OF E3 

 E3 

Circuit NR
MSE 

CC Avg. IR 
drop 
(mV) 

Avg. 
Error 
(mV) 

Max IR 
drop 
(mV) 

Max 
Error 
(mV) 

leon3mp 3.7% 0.54 92 5.0 
(5%) 241 49.0 

(20%) 
GPU 7.4% 0.55 25 3.7 

(15%) 190 39.3 
(21%) 

Fig. 7 is error distribution of leon3mp and GPU (top 
10% worst cells in Table VI).  Totally 60K and 300K cells 
for leon3mp and GPU, respectively.  99.9% of errors are 
smaller than 15% of max IR drop (36mV to leon3mp and 
28.5mV to GPU).  Red lines mean the 15% boundary.   
Only 10 cells (out of 60K) in leon3mp and 22 cells (out of 
300K) in GPU are under-predicted.    

 
    

Fig. 7a. Leon3mp error distribution (60K cells) 

Fig. 7b. GPU error distribution (300K cells) 

Fig. 8 shows the plot of simulation IR drop results 
versus predicted IR drop for leon3mp and b18.  Training 
data are E1 plus E2 and prediction data is E3.  Y axis 
represents simulated IR drop.  X axis represents predicted 
IR drop.  Correlation of simulated IR drop and predicted 
IR drop is 0.98 for leo3map and 0.88 for b18. 

 
Fig. 8(a). Leon3mp         Fig. 8(b). b18 

Fig. 9 shows the IR drop map of leon3mp E3 circuit.  
Fig. 9a is simulated IR drop map and Fig 9b is predicted IR 
drop map.  Green area is low IR drop area, yellow area is 
medium IR drop area, and orange area is serious IR drop 
area.  Red dots are high IR drop cells.  Correlation 
between simulated IR drop map and predicted IR drop map 
is high. 

 
Fig. 9a. Leon3mp simulated IR drop map 

Fig. 9b. Leon3mp predicted IR drop map 
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C. Runtime 

Table VII shows the runtime comparison between 
proposed technique and commercial tools.  In the 
proposed flow, we only need one feature extraction plus 
one training in the training phase.  In the prediction phase, 
we need one feature extraction plus one (or more) 
prediction.  Total time of proposed technique is two 
feature extraction time plus one training time plus one 
prediction time.  Although we cannot save time for small 
circuits, we can save a significant amount of simulation 
time for large circuits.  We need only 13 minutes to 
predict IR drop for GPU whereas RedHawk needs almost 
one day to simulate the circuit.  The run time speedup is 
shown in the parenthesis (including feature extraction and 
training).  Our technique significantly reduces the IR drop 
simulation time.   

TABLE VII.  RUNTIME COMPARISON 

Circuit b18 b19 leon3mp GPU 
Feature 

Extraction 
12s 32s 147s 11m27s 

Training 51s 106s 204s 24m57s 
Prediction 1s 2s 19s 1m29s 
Total time 76s 172s 517s 49m20s 

NANOSIM 46s 
(0.6X) 

95s 
(0.55X) 

734s 
(1.4X) - 

RedHawk - - - 1 day 
(30X) 

                                                                                                             

V. DISCUSSION 
For ANN to work well, both the number of hidden 

layers and neurons should be carefully tuned.  Using too 
few neurons will result in underfitting.  It occurs when 
there are too few neurons to detect important information in 
a large data set.  Too many neurons may lead to overfitting.   
In this work, we tried two, three up to four hidden layers.  
We found that two hidden layers with twenty neurons for 
each hidden layer are enough for our data set.  Too many 
layers would not improve the accuracy, and too many 
neurons would lead to overfitting.   

Our proposal is good for the design sign-off stage, when 
the revised circuit is very similar to its previous version.  
Every time we add a new version, we would need to add 
this new version to our training so that this assumption can 
be valid.  

VI. CONCLUSIONS  

In this work, we have proposed an IR drop prediction 
for ECO-revised circuits using artificial neural network.  
We sampled a small portion of cells on a die to train the 
neural network.  We proposed seven feature extractions, 
which are simple and scalable for large designs.  Our 
experiment results show that prediction accuracy (average 
error 3.7mV) and correlation (0.55) are very high for a 3 
million-gate real design.  The run time speedup is up to 

30X.  The proposed method is very useful for designers to 
save the simulation time to fix the IR drop problem. 
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