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Abstract

With the rapid proliferation of Al-generated content (AIGC)
on multimedia platforms, efficient and reliable video forgery
detection has become increasingly important. Existing ap-
proaches often rely on either visual artifacts or semantic
inconsistencies, but suffer from high computational costs,
limiting their deployment at scale. In this work, we propose
SVD-Det, a lightweight and efficient pipeline that lever-
ages both Semantic and Visual Defect cues to detect forged
videos. SVD-Det fuses spatiotemporal representations from
raw RGB frames and compression-induced distortions us-
ing a 3D-Swin Transformer, and augments semantic under-
standing via CLIP-based embeddings. To integrate these
heterogeneous modalities, we introduce Domain-Query At-
tention (DoQA), a novel attention mechanism that hierar-
chically aggregates spatial and temporal features. Experi-
ments across seven video generation domains demonstrate
that SVD-Det not only achieves state-of-the-art detection
performance but also reduces model size and inference time
by over 97% and 98%, respectively, compared to LMM-
based baselines. Our results highlight the practicality and
robustness of SVD-Det for scalable AIGC detection in real-
world scenarios.

1. Introduction

With the rapid advancement of artificial intelligence (AI)
generation models, Al-generated content (AIGC) has be-
come increasingly prevalent on streaming multimedia plat-
forms. As illustrated in Figure 1, individuals can now easily
create and share high-quality videos via social video plat-
forms. However, this surge in generated content poses a
significant threat to the reliability of information delivered
through web applications. While most existing methods fo-
cus on detecting forged images, their high computational
cost often limits their applicability to video data.
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Rather than directly training an AIGC detector, we begin
by posing a fundamental question: “How do humans per-
ceive that a video is artificial?”” Humans can often detect
Al-generated videos due to unnatural artifacts and implau-
sible content. Beyond visual appearance, the way a video is
encoded and transmitted also plays a crucial role in percep-
tion. Prior studies [26, 36] suggest that compression and
transmission artifacts, such as blurring and compression,
can obscure these revealing signs, making detection more
difficult.
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Figure 1. The example frames from Al-generated videos, includ-
ing OpenSora, Sora, Pika, Stable Video, Stable Video Diffusion,
and VideoCrafterl.

Currently, Visual Language Models (VLMs) deliver im-
pressive performance across a wide range of tasks. How-
ever, these models cannot process entire videos at once; in-
stead, they analyze samples of frames. For example, Fig-
ure 2 illustrates a failure case encountered in an online chat-
bot dialogue. This example highlights the challenges faced
in real-world applications. Additionally, statistics indicate
that over 30 million clips are uploaded to social media plat-
forms daily. Examining all these clips using VLM agents
would be prohibitively expensive, which hampers the com-
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Figure 2. A failure case in online chatbot applications arises
when the language model cannot identify inconsistencies among
the frames of an Al-generated video.

mercial viability of the models due to high inference costs.

To address these challenges, we propose a lightweight
and efficient video forgery detection model named SVD-
Det, which integrates both semantic and visual defect cues.
The effectiveness of each modality is visualized in fig-
ure 3. Specifically, SVD-Det extracts spatial and tempo-
ral information using 3D Swin Transformer [14] from both
the raw RGB video and its compressed version. It also
captures high-level semantic content via the CLIP visual
encoder [20]. To unify these heterogeneous cues, we in-
troduce a novel attention module, Domain-Query Atten-
tion (DoQA), which enables effective multi-modal fusion
and ultimately achieves better performance in detecting Al-
generated content. Our main contributions are summarized
as follows:

* We propose SVD-Det, a lightweight and efficient pipeline
for video forgery detection, achieving state-of-the-art per-
formance while reducing the number of parameters by
98% and the inference time by 97% compared to exist-
ing methods.

* We exploit compression artifacts as discriminative fea-
tures, providing a computationally efficient alternative to
reconstruction-based detection.

e We introduce Domain-Query Attention (DoQA), a
novel attention mechanism for fusing visual and semantic
features effectively.
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Figure 3. Performance of visual, defective, and semantic features.
The ‘fused’ refers to the SVD-Det that incorporates features from
all three modalities.

* We validate the proposed method on large-scale, user-
uploaded content from a popular multimedia platform
without fine-tuning on the test set, demonstrating strong
robustness and generalizability in real-world applications.

2. Related Works
2.1. Forgery Image Detection

Recent research on forgery image detection [11, 28] has
made significant advancements with the development of
generative adversarial networks (GANs) [6] and diffusion-
based techniques [9]. These approaches take advantage of
the artificial patterns created by generative defects in im-
ages. Specifically, Guo et al. [7] proposed a hierarchical
decision-making process to identify the type of generation
used. However, their non-parametric method struggles to
keep pace with the rapid evolution of generative techniques.
Tan et al. [25] highlighted the importance of upsampling in
generative methods and expanded the detection capabilities
beyond CNN-based methods [16].

The advancement of generative models has limited the
generalizability of forgery detection due to the removal of
obvious unnatural patterns. To enhance detection capa-
bilities, researchers are leveraging the semantic informa-
tion from foundation models and Visual Language Models
(VLMs). For instance, Ojha et al. [18] addressed the chal-
lenges posed by high-quality generated images by utilizing
the CLIP model [20] to identify unnatural scenes.

2.2. Forgery Video Detection

Forgery video detection has evolved alongside various
video manipulation techniques. Early research was influ-



enced by methods for face swapping. Zhao et al. [35] local-
ized facial representations and identified artificial patterns
within video frames. Haliassos et al. [8] focused on fa-
cial landmarks and demonstrated the inconsistencies in lip
movement present in generated videos. Zheng et al. [36] in-
corporated temporal information into forgery detection by
refactoring frame features using temporal transformer en-
coders. Additionally, Wang et al. [31] proposed an opti-
mization strategy that alternately updates the parameters of
spatial and temporal filters.

As video generation technology continues to advance,
diffusion-based models [10, 37] are producing smooth and
impressive videos. To identify high-quality generated con-
tent, video forgery detection must consider not only visual
inconsistencies but also counterfeit semantic features. Wu
et al. [32] harnessed the capabilities of large VLMs to de-
velop a detection pipeline that incorporates reasoning and
machine perception through prompting. Zhang et al. [34]
introduced a question-and-answer pipeline using VLMs to
detect unnatural patterns in videos. Additionally, Song
et al. [24] enhanced performance in artificial intelligence-
generated content (AIGC) detection by aligning features
from a CNN backbone with tokens from LLM responses.

While VLMs achieve remarkable results, their intensive
computational costs pose a significant challenge for practi-
cal applications. Additionally, video embedding inference
still relies on a frame-by-frame approach, resulting in fre-
quent input/output requirements during processing. To re-
duce computational overhead, we propose an end-to-end
optimization pipeline that integrates a Video Swin Trans-
former [14] with a CLIP visual encoder [20]. This approach
captures the underlying semantic representations of the data
instead of relying on fine-tuned VLM tokens.

2.3. Defects of Al-generated Videos

Current AIGC detection methods focus on identifying clues
related to defect patterns. Corvi et al. [4] analyzed the
residual patterns reconstructed from a denoising model and
showed that diffusion-based models produce forensic traces
distinct from other generation models. Also, they note that
‘well-trained’ detectors cannot be generalized to ‘unseen’
patterns that were not present during training. Vahdati et al.
[26] further visualized the frequency responses of denoised
images and demonstrated that the model can be significantly
affected by compression artifacts. Nguyen et al. [17] inves-
tigated the frequency responses of the manipulated images.

The diffusion process consists of an iterative denoising
procedure. In this context, Wang et al. [30] proposed the
DIRE loss, which calculates the reconstruction error aris-
ing from the denoising process. Diffusion-generated images
can be nearly perfectly reconstructed using a pretrained
model, whereas real images lack this reconstruction fidelity,
revealing a key forensic distinction. Building on the concept

of DIRE loss, Luo et al. [15] explored reconstruction loss in
the latent space, LaRE?, demonstrating trends similar to
those observed with DIRE loss.

Despite the strong performance of VLMs, their high
computational demands and frame-wise inference require-
ments hinder real-time deployment. To address this, we
have developed a lightweight end-to-end pipeline for de-
tecting AIGC and analyzing reconstruction errors stemming
from compression artifacts.

3. Method

Inspired by the demands of streaming multimedia applica-
tions, uploaded videos are typically stored in various bi-
nary formats determined by codec settings and compres-
sion standards. While compression algorithms are designed
to align with human perceptual quality, they often produce
disproportionately large bitstreams in the presence of subtle
inconsistencies, especially introduced in Al-generated con-
tent. To address this, our model leverages two input sources:
the raw RGB video and its compressed counterpart, which
captures distortion artifacts.

Aside from visual defects, humans often rely on seman-
tic understanding to judge the authenticity of video content.
Unnatural themes or implausible scenes are quickly flagged
by human perception. To incorporate semantic represen-
tations into our process, we utilize the visual foundation
model, CLIP [20], to extract the video’s topic.

We introduce a novel model, SVD-Det, which uti-
lizes both Semantic and Visual Defect cues to detect Al-
generated videos. After extracting features from the re-
spective modalities, our pipeline integrates them using a
Domain-Query Attention mechanism. Spatial and tempo-
ral features are aggregated independently to enhance repre-
sentational efficiency. The final prediction is derived from
visual and semantic scores, each computed through separate
feedforward networks (FFNSs).

3.1. Model Overview

The proposed method, SVD-Det, is illustrated in Figure 4.
SVD-Det does not depend on extensive training with com-
pressed videos; instead, it utilizes the artifacts created by
compression. The blocking artifacts that result from com-
pression can also influence how humans perceive the video.
While existing methods mainly target forgery detection at
the frame level, maintaining temporal consistency across
video clips is crucial for human perception. Rather than
simply combining decisions from individual frames, SVD-
Det utilizes the 3D-Swin block from the Video Swin Trans-
former [14] to capture temporal information through con-
secutive patches. The two sequences are concatenated and
used as visual features.

Furthermore, we incorporate the CLIP visual en-
coder [20] to extract high-level semantic representations,
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Figure 4. The proposed SVD-Det consists of an overall pipeline with three main components: (1) visual features, (2) defective features, and
(3) semantic features. The visual and defective features are processed using a Video Swin Transformer [14], while the semantic features
rely on a pretrained CLIP model [20]. Spatial attention is applied through a newly proposed Domain-Query Attention block. The refined
visual and semantic information is then sent to separate feedforward networks (FFNs) to compute visual and semantic scores, which are

used for the final decision.
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Figure 5. The semantic visualization of frames. The left image
shows the video from YouTube, while the right image displays the
frames from Stable Diffusion.

allowing us to identify forged clips based on unrealistic pat-
terns. Figure 5 demonstrates that the semantic information
is closely related across the generated clips. The compres-
sion features are elaborated in section 3.2, and the DoQA
block structure is illustrated in section 3.3.

3.2. Compression Artifact

Conventional metrics for assessing compression quality,
such as Video Multimethod Assessment Fusion (VMAF),
Structural Similarity Index (SSIM), and Peak Signal-to-
Noise Ratio (PSNR), evaluate transient effects and noise
levels statistically. While these metrics generally align well
with real-world video distributions, they do not perform
as effectively for Al-generated videos. Specifically, Al-
generated videos often contain unnatural patterns that lead
these metrics to incorrectly compensate for artifacts by sug-
gesting higher bitrates, resulting in a deviation from ac-
curate compression assessment. The frequency analysis is

presented in Figure 6.

The bitrate partition in Al-generated videos often results
in the preservation of unnatural patterns. As a result, while
compressed AIGC maintains high-frequency patterns, it
loses quality in low-frequency areas. When compressing
videos at the same Constant Rate Factor (CRF), the distor-
tions observed in real videos differ from those in counterfeit
ones.
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Figure 6. The frequency analysis of compression artifacts in-
volves comparing the original and compressed frames using a
two-dimensional Fourier transform. The training data comprises
real videos sourced from YouTube, as well as videos generated
by Stable Video Diffusion. The generated testing data includes
VideoCraftl, OpenSora, Sora, Pika, Stable Diffusion, and Stable
Video, organized from left to right and top to bottom.

As shown in Figure 6, the frequency-domain residue dis-
tributions reveal this contrast: real videos exhibit distortions



uniformly across all frequencies, whereas Al-generated
videos show dominant low-frequency distortions. The ver-
tical and horizontal axes intersecting at the origin in the fre-
quency domain correspond to grid-like artifacts in the spa-
tial domain. Consequently, SVD-Det processes two input
streams—raw RGB frames and compression-induced dis-
tortion—to better capture these differences.

3.3. Domain-Query Attention (DoQA)

We propose a Domain-Query Attention (DoQA) block, con-
sisting of two cascaded attention layers that gather informa-
tion from neighboring tokens. The structure of this mod-
ule is illustrated in Figure 7. To establish an efficient pro-
cessing pipeline, we decompose operations across the three
spatiotemporal dimensions into separate spatial and tempo-
ral stages. First, the DoQA block is applied to the spatial
dimensions (height and width) in order to extract a compact
representation for each frame. Then, a second DoQA block
aggregates these frame-level representations across the tem-
poral dimension.

The input to the first self-attention layer is formed by
concatenating a learnable token with a sequence of neigh-
boring tokens. The resulting feature tensor F' € RX*¢ and
the pooled domain token Q € R is computed as follows:

Q, F = self-attn(X) (1)
X = concate([DOM], X), 2)

where X € REXC denotes the sequence of input tokens
of length L and channel dimension C, and [DOM] € R¢
is a learnable token used to indicate the source of the fea-
tures. The function self-attn denotes the self-attention
mechanism [27], and concate denotes the concatenation
operation along the sequence dimension.

To further concentrate the representation of the domain,
the pooled domain token is passed through a multi-layered
perceptron and then forwarded to a second cross-attention
layer along with the sequence of input tokens:

Q = MLP(Q) 3)
V =cross-attn(Q, F), (@)

where @ € R® denotes the refined pooled domain token,
and F € RE*C represents the sequence of feature tokens.
The function MLP is a two-layer feedforward network, and
cross—attn denotes the cross-attention mechanism [27].
The final representation V' € R is obtained by using @ as
query and F' as both the key and value in the cross-attention
operation.

A learnable token is introduced to summarize contextual
information from neighboring tokens. The representations
can be further encoded into a compact vector, enabling the
model to represent video content effectively while avoiding

the curse of dimensionality. This design stabilizes training
and improves generalization. The details of ablation studies
can be found in section 4.7.
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Figure 7. The proposed attention mechanism consists of several
steps. For example, in the spatial merging block, the input for the
first self-attention layer is formed by concatenating domain tokens
with spatial tokens. In this setup, the domain token acts as the
query, while the spatial tokens serve as both the keys and values
in the second cross-attention layer. To simplify the explanation,
the multi-layer perceptrons (MLPs) that connect the two attention
mechanisms have been omitted.

3.4. Loss Function

To address the imbalanced label distribution in the detection
dataset, we adopt the weighted focal loss [12] instead of the
standard cross-entropy loss for binary classification. The
classification loss is defined as:

Lcls = Oé(l - p)ﬂ/log(pL (5)

where « and ~y are hyperparameters that control the weight-
ing and focusing factor, respectively, and p denotes the pre-
dicted probability for the ground-truth class. The weighted
focal loss down-weights easy examples and emphasizes
learning from hard or minority-class examples, thereby im-
proving the model’s sensitivity to true positives in imbal-
anced settings.

Since the features consist of two modalities, namely vi-
sual and semantic, we introduce two auxiliary classifica-
tion losses during training. The visual and semantic scores
are obtained from two corresponding feedforward networks
(FFNs), and both are supervised using the same ground-
truth labels as the primary classification task. The auxil-
iary losses, L,;s and L, , follow the same hyperparame-
ter configuration as the main classification loss L.;s. The
overall objective function is defined as:

Ltotal = Lcls + waux(Lvis + Lsem)a (6)

where Ly,.q; represents the final objective function, and
Wqye 18 @ weighting factor that balances the primary clas-
sification loss with the auxiliary modality-specific losses.



4. Experiments

4.1. Experimental Settings

We utilize the tiny 3D-Swin transformer [14] as the back-
bone for processing RGB videos and the residues from the
compressed video. Our semantic backbone is based on the
CLIP model [20]. The backbone parameters are initialized
with a warm start using pretrained weights, while the pa-
rameters in the attention blocks are initialized with a cold
start. We employ the AdamW optimizer, setting the learn-
ing rate to 10~ for the backbone and 10~° for the attention
blocks, with a weight decay of 1073, The weights for the
auxiliary semantic and visual loss are set to 0.2.

4.2. Dataset

In this experiment, we follow the setup outlined in the DVF
dataset [24] to ensure fair comparisons. The training set in-
cludes 1,000 real videos sourced from YouTube and 1,973
fake videos generated by Stable Video Diffusion [2]. Ten
percent of the videos are set aside as a validation set, while
the remainder is used for training. For evaluation, the real
videos are obtained from Internvid10M [29], and the fake
videos are generated using VideoCraftl [3], ZeroScope,
Opensora [37], Sora, Pika, Stable Diffusion [21], and Stable
Video.

To minimize the effects of thresholding, we employ the
Area Under the Curve (AUC) for performance evaluation.
In our comparison of state-of-the-art methodologies, we as-
sess techniques that utilize various backbone architectures.
For frame-level forgery detection, we select CNNDet [28],
F3Net [19], and HiFi-Net [7]. In contrast, ViViT [1],
TALL [33], and TS2-Net [13] focus on integrating spatial
and temporal information from consecutive frames at the
video level. Using semantic information from CLIP, Clip-
Raising [5], Uni-FD [18], and DE-FAKE [22] are designed
to detect unrealistic videos based on their content. Addi-
tionally, DIRE [30] employs a reconstruction loss derived
from diffusion-based generation, as described in the DDIM
formulas [23]. Finally, MM-Det [24] leverages a large lan-
guage model to extract features and combine textual and
visual representations for effective detection.

4.3. Video Forgery Detection

Table | demonstrates that the proposed SVD-Det model
achieves superior average AUC performance compared to
state-of-the-art methods across seven Al-generated video
domains. On average, SVD-Det surpasses MM-Det by
2.7% in AUC. Specifically, it outperforms MM-Det in five
domains: VideoCraftl (+4.2%), ZeroScope (+0.8%), Open-
Sora (+10.8%), Pika (+2.2%), and Stable Video (+1.8%).
For the remaining two domains, Sora and Stable Diffusion,
SVD-Det delivers competitive results, with only marginal
drops of 1.0% and 2.0%, respectively. These results high-

light the robustness and generalizability of SVD-Det across
diverse generation frameworks.

In comparison to DIRE [30], which focuses solely on
defective features, SVD-Det incorporates additional infor-
mation beyond just distribution, resulting in an AUC per-
formance that is over 30% higher. Similarly, SVD-Det out-
performs various semantic detection methods, such as Clip-
Raising [5], Uni-FD [18], and DE-FAKE [22], by 20%.
Furthermore, SVD-Det showcases its capability to integrate
features from different modalities, achieving a 10% higher
AUC compared to visual feature-based models like HiFi-
Net [7], F3-Net [19], and ViVit [1].

4.4. Open-World Study

As shown in Table 2, we compare the proposed AIGC de-
tector (SVD-Det) with the previous state-of-the-art method
(MM-Det [24]) under an open-world detection setting. The
dataset used in this study is not open-source. The data is
collected from publicly available videos on a multimedia
platform. Detailed dataset statistics are provided in the Ap-
pendix. It is important to note that the proposed model is
not fine-tuned on this dataset, ensuring that the evaluation
truly reflects its ability to generalize to unseen data.

From Table 2, it can be observed that SVD-Det
consistently outperforms MM-Det across both the well-
constructed (DVF) and open-world datasets. While the per-
formance gap on DVF is modest (+2.7% AUC), the im-
provement on the open-world dataset is substantial (+22.6%
AUQC). This large gain demonstrates the robustness and gen-
eralizability of the proposed method in handling diverse,
in-the-wild Al-generated content where training and testing
domains differ significantly. These results highlight the ef-
fectiveness of incorporating multi-modal cues and the pro-
posed Domain-Query Attention in boosting performance
without any domain-specific fine-tuning.

4.5. Efficiency

While MM-Det represents a significant breakthrough in the
field, it is important to consider the associated computa-
tional costs for real-world deployment. The process of
frame-wise reconstruction requires frequent read and write
operations on the disk, which can lead to high deployment
expenses. Additionally, fine-tuning and inference of Visual
Language Models (VLMs) necessitate substantial GPU re-
sources. Currently, when a video is input into the VLM
application, it is sampled frame by frame, and each frame is
processed in a frame-wise manner. The temporal informa-
tion is lost in the dialogues.

While VLMs are quite powerful, their answers are not
always completely accurate. Figure 2 illustrates a failure
case in video forgery detection using an online chatbot ap-
plication. The VLM shows the capability to apply metrics
from signal processing, including sharpness and brightness.



Method VideoCrafterl | ZeroScope | OpenSora | Sora | Pika | Stable Diffusion | Stable Video || Avg
DIRE [30] 55.9 61.8 53.8 60.5 | 65.8 62.7 69.9 62.1
Raising [5] 63.8 60.7 64.1 68.8 | 70.7 78.2 62.8 67.0
TALL [33] 76.0 65.9 62.1 64.3 | 72.3 65.8 79.8 69.5

DE-FAKE [22] 74.7 68.2 55.8 64.1 | 85.6 85.4 70.6 71.2
TS2-Net [13] 61.8 70.6 75.5 78.0 | 78.2 62.1 78.6 72.1
Uni-FD [18] 75.0 71.2 76.6 73.1 | 76.2 80.2 66.7 74.1
CNNDet [28] 87.4 88.2 78.0 63.8 | 77.3 73.5 78.9 78.2

ViViT [1] 79.1 78.4 71.7 69.4 | 83.1 82.1 83.6 79.1
F3Net [19] 89.7 80.5 69.3 70.8 | 88.9 84.4 85.1 81.3
HiFi-Net [7] 90.2 89.7 80.1 70.1 | 87.8 89.2 83.1 84.3
MM-Det [24] 93.5 94.0 88.8 86.2 | 95.9 95.7 89.9 92.0
SVD-Det(Ours) 99.7 94.8 99.6 85.2 | 98.1 93.7 91.7 94.7

Table 1. Video forgery detection performance on the DVF dataset measured by AUC (%). The data is taken from [24]. The highest

performance is marked in bold, while the second highest is underlined.

Data Source Well-Constructed | Open-World

DVF Social Media
MM-Det [24] 92.0 48.6
SVD-Det 94.7 71.2

Table 2. Comparison between the proposed method and the state-
of-the-art AIGC detector under an open-world setting. Perfor-
mance is measured by AUC (%), with open-world testing data col-
lected from the public multimedia platform.

While its planning and generalization capabilities are im-
pressive, the decision-making process can be computation-
ally intensive. These metrics do enhance the reliability of
the reasoning process; however, in the specific area of de-
tection, SVD-Det provides a more economical solution and
outperforms the VLM.

Table 3 presents a comparison of the training and in-
ference costs between MM-Det and SVD-Det. During the
inference stage, SVD-Det achieves a remarkable 97% re-
duction in model size and an impressive 98% decrease
in inference time. In addition to the inference stage, the
training process costs are also essential for deployment
considerations. SVD-Det employs an end-to-end training
scheme, whereas MM-Det relies on a Visual Language
Model (VLM) to generate visual question-answering pairs,
which are then used to fine-tune a 7 billion parameter Lan-
guage Model.

4.6. Visualization

The attention map illustrated in Figure 8 highlights the ar-
tifact in the video through the use of the proposed DoQA
module. This module enables the model to concentrate on
unnatural patterns and artifacts, even as the time sequence
extends. In contrast, when the input length increases, the
heatmaps generated by the model without DoQA begin to
diverge.
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Figure 8. Visualization of attention heatmaps w/ and w/o DoQA.
The first clip is sampled from Soar, while the second clip is taken
from Stable Video. The upper row displays the attention heatmaps
produced using DoQA, and the lower row shows the heatmaps
generated without DoQA. These images represent the last layer
of attention heatmaps.

4.7. Ablation Studies

In Table 4, we analyze features from different modalities.
The performance of the original RGB feature indicates that
the generation methods produce high-quality content, with
no significant temporal inconsistencies in the videos. A
similar trend is observed with the compression distortion
features, which can reveal certain patterns. However, distor-
tion should not be considered the sole indicator of quality.
While semantic features can identify high-quality but un-
realistic videos, they struggle to detect inconsistent spatial



Avg AUC(%) Model Size Inference Time (sec/clip) Training Recipe
(1) Prepare VQA pairs from larger VLM
MM-Det 92.0 7B (40x) 150 (50x) (2) Finetune 7B-VLM with VQA pairs
(3) Train attention blocks
SVD-Det(Ours) 94.7 180M (1x) 3 (1x) End-to-end

Table 3. The efficiency comparison between SVD-Det and MM-Det [24] is presented, with inference time measured on a single Tesla

V100 GPU.

Features Video-  Zero- Open- Sora  Pika Stable Stable Ave

Visual Defective Semantic | Crafter]l Scope  Sora Diffusion  Video
v 99.5 77.8 99.3 558 70.6 79.0 586 | 77.2
v 91.4 64.4 912 605 849 66.3 71.8 | 75.8
v 89.4 72.6 909 656 857 64.7 75.7 | 68.5
v v 93.5 67.5 933 642 87.8 61.1 76.6 | 77.7
v v 93.7 64.8 93.7 60.0 795 76.8 78.8 | 79.6
v v v 98.0 70.7 99.2 70.6 80.6 78.4 79.7 | 81.0

Table 4. The ablation studies demonstrate the functionalities of the features. The merging is performed through cross-attention. The v'mark

indicates that the feature is applied during the model training stage.

and temporal patterns.

By combining visual and semantic cues, we observe
improved performance across all generated videos. Ulti-
mately, the final model, which incorporates three modali-
ties, semantic, visual, and defective features, achieves the
best results.

. Open- . Stable Stable
Attention ‘ SIZ) I Sora Pika Diffusion  Video Avg
Cross-Attention | 99.2  70.6 80.6 78.4 79.7 | 81.0
Self-Atteion 91.6 626 823 59.7 78.8 | 73.8
DoQA 99.6 852 98.1 93.7 91.7 | 94.7

Table 5. The ablation studies demonstrate the functionalities of
the proposed Domain-Query Attention mechanism. All experi-
ments are conducted using features from three modalities: visual,
defective, and semantic information. To save space, we omit the
results in VideoCrafter]l and ZeroScope(~0.95), but the detailed
experiment results can be found in the supplementary materials.

To validate the proposed Domain-Query Attention
(DoQA), we present the performance results in Table 5. The
self-attention mechanism uses the concatenation of tokens
from both modalities, which increases the length of the in-
put sequence and requires more computational resources.
This complexity can also hinder the model’s convergence.
In contrast, cross-attention restricts the generalizability of
features across different modalities. Therefore, the pro-
posed DoQA effectively captures domain information from
the query modality and integrates it with information from
other modalities. Additionally, the cascaded structure of
DoQA facilitates faster convergence.

5. Conclusion

In this paper, we presented SVD-Det, a novel and effi-
cient framework for video forgery detection that jointly
leverages semantic information and visual compression arti-
facts. Motivated by the way humans perceive Al-generated
videos—through both unnatural appearance and implau-
sible semantic content—we designed a dual-branch ar-
chitecture that captures spatiotemporal patterns via a 3D
Swin Transformer and semantic cues via CLIP embeddings.
To effectively fuse multi-modal signals, we proposed the
Domain-Query Attention (DoQA) module, which hierar-
chically aggregates spatial and temporal features using a
lightweight attention mechanism.

Our extensive experiments on seven challenging AIGC
domains demonstrate that SVD-Det achieves state-of-the-
art performance while being significantly more compu-
tationally efficient than prior LMM-based methods. It
reduces inference time by 98% and model size by
97%, making it practical for deployment in large-scale
content moderation systems. We believe that SVD-
Det opens new directions for scalable and interpretable

video forgery detection in the era of generative me-
dia.
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